如图,已知☉O的直径AB=8,过A、B两点作☉O的切线AD、BC.
(1)当AD=2,BC=8时,连接OC、OD、CD.
①求△COD的面积.
②试判断直线CD与☉O的位置关系,并说明理由.
(2)若直线CD与☉O相切于点E,设AD=x(x>0),试用含x的式子表示四边形ABCD的面积S,并探索S是否存在最小值,写出探索过程.
已知△ABC,∠ACB=90º,AC=BC,点E、F在AB上,∠ECF=45º,设△ABC的面积为S,说明AF·BE=2S的理由。
在萧山区第二届汽车展期间,某汽车经销商推出四种型号的小轿车共1000辆进行展销.
型号轿车销售的成交率为50%,其它型号轿车的销售情况绘制在图1和图2两幅尚不完整的统计图中.
参加展销的
型号轿车有多少辆?
请你将图2的统计图补充完整;
通过计算说明,哪一种型号的轿车销售情况最好?
小明用下面的方法求出方程的解,请你仿照他的方法求出下面另外两个方程的解,并把你的解答过程填写在下面的表格中.
方程 |
换元法得新方程 |
解新方程 |
检验 |
求原方程的解 |
![]() |
令![]() 则 ![]() |
t=2 |
t ="2" > 0 |
![]() 所以x=4 |
![]() |
||||
![]() |
图(a)、图(b)是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1.请在图(a)、图(b)中,分别画出符合要求的图形,所画图形各顶点必须与方格纸中的小正方形顶点重合.
.已知a=()
,b="2cos" 45
-
,c=(2011-
)
,d=
请化简这四个数;
从这四个数中任取两个,积为无理数的概率是多少。