如图,抛物线y=ax2+bx+3经过A(-1,0),B(3,0)两点,且交y轴于点C,对称轴与抛物线相交于点P、与直线BC相交于点M.
(1)求该抛物线的解析式.
(2)在抛物线上是否存在一点N,使得|MN-ON|的值最大?若存在,请求出点N的坐标;若不存在,请说明理由.
(3)连接PB,请探究:在抛物线上是否存在一点Q,使得△QMB与△PMB的面积相等?若存在,求出点Q的坐标;若不存在,请说明理由.
如图,在正方形网格中每个小正方形的边长都是单位长度1,△的顶点都在格点上,且△
与△
关于点
成中心对称.
(1)在网格图中标出对称中心点的位置;
(2)画出将△沿水平方向向右平移5个单位后的△
.
先化简,再求值:,其中
,
.
计算:.
计算:.
已知:如图,二次函数的图象与y轴交于点C(0,4),与x轴交于点A、B,点A的坐标为(4,0).
(1)求该二次函数的关系式;
(2)写出该二次函数的对称轴和顶点坐标;
(3)点Q是线段AB上的动点,过点Q作QE∥AC,交BC于点E,连接CQ.当△CQE的面积最大时,求点Q的坐标;
(4)若平行于x轴的动直线与该抛物线交于点P,与直线AC交于点F,点D的坐标为(2,0).问:是否存在这样的直线
,使得△ODF是等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由。