某市举行了“高速公路免费政策”满意度测评,共有1万人参加了这次测评(满分100分,得分全为整数).为了解本次测评分数情况,从中随机抽取了部分人的测评分数进行统计,整理见下表:
组别 |
分组 |
频数 |
频率 |
1 |
![]() |
60 |
0.12 |
2 |
![]() |
120 |
0.24 |
3 |
![]() |
180 |
0.36 |
4 |
![]() |
130 |
c |
5 |
![]() |
a |
0.02 |
合计 |
b |
1.00 |
(1)求出表中的值;
(2)若分数在(含60分)的人对“高速公路免费政策”表示满意,现从全市参加了这次满意度测评的人中随机抽取一人,求此人满意的概率;
(3)请你估计全市的平均分数.
已知椭圆 的中心在原点,焦点在轴 上,以两个焦点和短轴的两个端点为顶点的四边形是一个面积为8的正方形(记为 ).
(Ⅰ)求椭圆
的方程;
(Ⅱ)设点
是椭圆
的左准线与
轴的交点,过点
的直线
与椭圆
相交于
,
两点,当线段
的中点落在正方形
内(包括边界)时,求直线
的斜率的取值范围。
已知函数,其中
若
在x=1处取得极值,求a的值;
求
的单调区间;
(Ⅲ)若的最小值为1,求a的取值范围。
在数列中,
(I)设,求数列
的通项公式
(II)求数列的前
项和
已知等腰梯形PDCB中,PB=3,DC=1,PD=BC=,A为PB边上一点,且PA=1,将△PAD沿AD折起,使面PAD⊥面ABCD.
(Ⅰ)证明:平面PAD⊥平面PCD;
(Ⅱ)试在棱PB上确定一点M,使截面AMC
把几何体分成的两部分.
有两枚大小相同、质地均匀的正四面体玩具,每个玩具的各个面上分别写着数字1,2,3,5. 同时投掷这两枚玩具一次,记为两个朝下的面上的数字之和.
(Ⅰ)求事件“不大于6”的概率;
(Ⅱ)“为奇数”的概率和“
为偶数”的概率是不是相等?证明你的结论.