如图所示,在四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,点E在线段PC上,PC⊥平面BDE.
(1)证明:BD⊥平面PAC;
(2)若PA=1,AD=2,求二面角B﹣PC﹣A的正切值.
(本小题满分12分)已知函数,
,直线
与曲线
切于点
且与曲线
切于点
.
(1)求a,b的值和直线的方程;
(2)证明:.
(本小题满分12分)已知抛物线,过点
的直线
交抛物线于A,B两点,坐标原点为O,
.
(1)求抛物线的方程;
(2)当以AB为直径的圆与y轴相切时,求直线的方程.
(本小题满分12分)某城市有东西南北四个进入城区主干道的入口,在早高峰时间段,时常发生交通拥堵现象,交警部门统计11月份30天内的拥堵天数,东西南北四个主干道入口的拥堵天数分别是18天,15天,9天,15天.假设每个入口发生拥堵现象互相独立,视频率为概率.
(1)求该城市一天中早高峰时间段恰有三个入口发生拥堵的概率;
(2)设表示一天中早高峰时间段发生拥堵的主干道入口个数,求
的分布列和数学期望.
(本小题满分12分)如图,四棱锥的底面ABCD是平行四边形,
底面ABCD,
,
.
(1)求证:;
(2)点E在棱PC上,满足,求二面角
的余弦值.
(本小题满分12分)在中,角A,B,C所对的边分别为a,b,c,且
.
(1)求b;
(2)若的面积为
,求c.