选修4 - 4:坐标系与参数方程
已知极坐标系的极点与直角坐标系的原点重合,极轴与轴的正半轴重合.若曲线
的极坐标方程为
,曲线
的参数方程为
(
为参数).
(1)将的极坐标方程化为直角坐标方程;
(2)若上的点
对应的参数为
,
为
上的动点,求
的最小值。
在直角坐标系
中,
的圆心为,半径为1.
(1)写出 的一个参数方程;
(2)过点 作 的两条切线.以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求这两条切线的极坐标方程.
已知抛物线 的焦点为 ,且 与圆 上点的距离的最小值为 .
(1)求 ;
(2)若点 在 上, 是 的两条切线, 是切点,求 面积的最大值.
设函数 ,已知 是函数 的极值点.
(1)求a;
(2)设函数 .证明: .
记 为数列 的前n项和, 为数列 的前n项积,已知 .
(1)证明:数列 是等差数列;
(2)求 的通项公式.
如图,四棱锥 的底面是矩形, 底面 , , 为 的中点,且 .
(1)求 ;
(2)求二面角 的正弦值.