选修4 - 4:坐标系与参数方程 已知极坐标系的极点与直角坐标系的原点重合,极轴与轴的正半轴重合.若曲线的极坐标方程为,曲线的参数方程为 (为参数). (1)将的极坐标方程化为直角坐标方程; (2)若上的点对应的参数为,为上的动点,求的最小值。
设命题“关于的x方程有两个实数根”,命题“关于x的不等式对恒成立”,若为假,为假,求实数的取值范围.
已知函数, (Ⅰ)若,求的单调区间; (Ⅱ)对于任意的,比较与的大小,并说明理由
已知点在椭圆C:上,且椭圆C的离心率为. (Ⅰ)求椭圆C的方程; (Ⅱ)过点作直线交椭圆C于点, 的垂心为,是否存在实数,使得垂心在Y轴上.若存在,求出实数的取值范围;若不存在,请说明理由.
在各项为正的等差数列中,首项,数列满足 (1)求数列的通项公式; (2)求证:.
在中,角所对的边分别为、、,且. (Ⅰ)求的值; (Ⅱ)若,求的最大值.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号