已知双曲线的中心在坐标原点,焦点在
轴上,离心率
,虚轴长为2.
(1)求双曲线的标准方程;
(2)若直线与双曲线
相交于
两点,(
均异于左、右顶点),且以
为直径的圆过双曲线
的左顶点
,求证:直线
过定点,并求出该定点的坐标.
(本小题满分12分)在中,角
的对边分别为
,且
成等差数列。
(Ⅰ)若,且
,求
的值;
(Ⅱ)求的取值范围。
设函数.
(1)画出函数y=f(x)的图像;
(2)若不等式,(a¹0,a、bÎR)恒成立,求实数x的范围.
(本小题满分10分)在直角坐标平面内,以坐标原点为极点,
轴的正半轴为极轴建立极坐标系,曲线
的极坐标方程是
,直线
的参数方程是
(
为参数)。
求极点在直线上的射影点
的极坐标;
若、
分别为曲线
、直线
上的动点,求
的最小值。
(本小题满分10分)从⊙外一点
引圆的两条切线
,
及一条割线
,
、
为切点.求证:
已知函数
若函数在区间(a,a+)上存在极值,其中a>0,求实数a的取值范围;
如果当时,不等式
恒成立,求实数
的取值范围。