在中,已知
.
(Ⅰ)求sinA与角B的值;
(Ⅱ)若角A,B,C的对边分别为的值.
在平面直角坐标系中,△ABC的两个顶点A,B的坐标分别为A(-1,0),B(1,0),平面
内两点G,M同时满足下列条件①+
+
=0;②|
|=|
|=|
|;③
∥
.(Ⅰ)求△ABC的顶点C的轨迹方程;(Ⅱ)是否存在过点P(3,0)的直线l与(Ⅰ)中轨迹交于E、F两点,且OE⊥OF?若存在,求出直线l斜率k的值;若不存在,说明理由.
已知函数.
(Ⅰ)若函数的图象在点
处的切线与直线
垂直,
求函数的单调区间;(Ⅱ)求函数
在区间
上的最大值.
已知点P,参数
,点Q在直线
上,求
的最大值。
设直线. 若直线l与曲线S同时满足下列两个条件:①直线l与曲线S相切且至少有两个切点;②对任意x∈R都有
. 则称直线l为曲线S的“上夹线”.
(Ⅰ)已知函数.求证:
为曲线
的“上夹线”.
(Ⅱ)观察下图:
根据上图,试推测曲线的“上夹线”的方程,并给出证明.
设,求A的特征值以及属于每个特征值的一个特征向量。