某地随着经济的发展,居民收入逐年增长,下表是该地一建设银行连续五年的储蓄存款(年底余额),如下表1:
年份x |
2011 |
2012 |
2013 |
2014 |
2015 |
储蓄存款y(千亿元) |
5 |
6 |
7 |
8 |
10 |
为了研究计算的方便,工作人员将上表的数据进行了处理,得到下表2:
时间代号t |
1 |
2 |
3 |
4 |
5 |
z |
0 |
1 |
2 |
3 |
5 |
(Ⅰ)求z关于t的线性回归方程;
(Ⅱ)通过(Ⅰ)中的方程,求出y关于x的回归方程;
(Ⅲ)用所求回归方程预测到2020年年底,该地储蓄存款额可达多少?
(附:对于线性回归方程,其中
)
如图,在锐角三角形ABC中,D 为C在AB上的射影,E 为D在BC上的射影,F为DE上一点,且满足
(1)证明:(2)若AD=2,CD=3.DB=4,求
的值.
已知函数图像上一点
处的切线方程为
(1)求
的值;(2)若方程
在区间
内有两个不等实根,求
的取值范围;(3)令
如果
的图像与
轴交于
两点,
的中点为
,求证:
如图,已知抛物线C的顶点在原点,开口向右,过焦点且垂直于抛物线对称轴的弦长为2,过C上一点A作两条互相垂直的直线交抛物线于P,Q两点.
(1)若直线PQ过定点,求点A的坐标;
(2)对于第(1)问的点A,三角形APQ能否为等腰直角三角形?若能,试确定三角形APD的个数;若不能,说明理由.
如图,在直角梯形ABCP中,,D是AP的中点,E,G分别为PC,CB的中点,将三角形PCD沿CD折起,使得PD垂直平面ABCD.(1)若F是PD的中点,求证:AP
平面EFG;(2)当二面角G-EF-D的大小为
时,求FG与平面PBC所成角的余弦值.
某市为“市中学生知识竞赛”进行选拔性测试,且规定:成绩大于或等于90分的有参赛资格,90分以下(不包括90分)的被淘汰.若有500人参加测试,学生成绩的频率分布直方图如图.
(1)求获得参赛资格的人数;
(2)根据频率直方图,估算这500名学生测试的平均成绩;
(3)若知识竞赛分初赛和复赛,在初赛中每人最多有5次选题答题的机会,累计答对3题或答错3题即终止,答对3题者方可参加复赛.已知参赛者甲答对每一个问题的概率都相同,并且相互之间没有影响.已知他连续两次答错的概率为,求甲在初赛中答题个数
的分布列及数学期望
.