已知点,点
在双曲线
上.
(Ⅰ)当最小时,求点
的坐标;
(Ⅱ)过点的直线
与双曲线
的左、右两支分别交于
、
两点,
为坐标原点,若
的面积为
,求直线
的方程.
(本小题满分13分)
已知点为抛物线
:
的焦点,
为抛物线
上的点,且
.
(Ⅰ)求抛物线的方程和点
的坐标;
(Ⅱ)过点引出斜率分别为
的两直线
,
与抛物线
的另一交点为
,
与抛物线
的另一交点为
,记直线
的斜率为
.
(ⅰ)若,试求
的值;
(ⅱ)证明:为定值.
(本小题满分13分)
如图1,在等腰梯形中,
,
,
,
为
上一点,
,且
.将梯形
沿
折成直二面角
,如图2所示.
(Ⅰ)求证:平面平面
;
(Ⅱ)设点关于点
的对称点为
,点
在
所在平面内,且直线
与平面
所成的角为
,试求出点
到点
的最短距离.
(本小题满分13分)
甲、乙两台机床生产同一型号零件.记生产的零件的尺寸为(cm),相关行业质检部门规定:若
,则该零件为优等品;若
,则该零件为中等品;其余零件为次品.现分别从甲、乙机床生产的零件中各随机抽取50件,经质量检测得到下表数据:
尺寸 |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
甲机床零件频数 |
2 |
3 |
20 |
20 |
4 |
1 |
乙机床零件频数 |
3 |
5 |
17 |
13 |
8 |
4 |
(Ⅰ)设生产每件产品的利润为:优等品3元,中等品1元,次品亏本1元. 若将频率视为概率,试根据样本估计总体的思想,估算甲机床生产一件零件的利润的数学期望;
(Ⅱ)对于这两台机床生产的零件,在排除其它因素影响的情况下,试根据样本估计总体的思想,估计约有多大的把握认为“零件优等与否和所用机床有关”,并说明理由.
参考公式:.
参考数据:
![]() |
0.25 |
0.15 |
0.10 |
0.05 |
0.025 |
0.010 |
![]() |
1.323 |
2.072 |
2.706 |
3.841 |
5.024 |
6.635 |
(本小题满分13分)
已知分别在射线
(不含端点
)上运动,
,在
中,角
、
、
所对的边分别是
、
、
.
(Ⅰ)若、
、
依次成等差数列,且公差为2.求
的值;
(Ⅱ)若,
,试用
表示
的周长,并求周长的最大值.
本题满分分 已知函数f (x)=x3+(1-a)x2-3ax+1,a>0.
(Ⅰ) 证明:对于正数a,存在正数p,使得当x∈[0,p]时,有-1≤f (x)≤1;
(Ⅱ)设(Ⅰ)中的p的最大值为g(a),求g(a)的最大值.