已知点,点
在双曲线
上.
(Ⅰ)当最小时,求点
的坐标;
(Ⅱ)过点的直线
与双曲线
的左、右两支分别交于
、
两点,
为坐标原点,若
的面积为
,求直线
的方程.
已知集合函数
的定义域为集合B。
(I)若,求集合
;
(II)已知是“
”的必要条件,求实数a的取值范围。
、如图,在三棱锥P-ABC中,PA⊥底面ABC,△ABC为正三角形,D、E分别是BC、CA的中点。
(Ⅰ) 若PA=AB=2,求三棱锥P-ABC的体积;
(Ⅱ)证明:BE⊥平面PAC
(Ⅲ)如何在BC上找一点F,使AD//平面PEF?并说明理由。
已知为偶函数,曲线
过点
,
.
(Ⅰ)求实数b、c的值;
(Ⅱ)若曲线有斜率为0的切线,求实数
的取值范围;
(Ⅲ)若当时函数
取得极值,确定
的单调区间和极值.
等比数列{}的前n 项和为
,已知
,
,
成等差数列.
(Ⅰ)求{}的公比q;
(Ⅱ)求-
=3,求数列{
}的通项公式
(Ⅲ)数列{n}的前n项的和
已知函数.
(Ⅰ)求f(x)的周期和单调递增区间;
(Ⅱ)若x∈[0,]时,f(x)的最大值为4,求a的值,并指出这时x的值.