如图,在△ABC中,∠BAC=90°,AB=6cm,BC=10cm,点D在线段AC上,且CD=2cm,动点P从BA的延长线上距A点10cm的E点出发,以每秒2cm的速度沿射线EA的方向运动了t秒.
(1)求AD的长.
(2)直接写出用含有t的代数式表示PE= .
(3)在运动过程中,是否存在某个时刻,使△ABC与△ADP全等?若存在,请求出t值;若不存在,请说明理由.
如图,AB是⊙O的直径,点F,C是⊙O上两点,且,连接AC,AF,过点C作CD⊥AF交AF延长线于点D,垂足为D.
(1)求证:CD是⊙O的切线;
(2)若CD=2,求⊙O的半径.
已知二次函数y=x2-2mx+m2+3(m是常数).
(1)求证:不论m为何值,该函数的图象与x轴没有公共点;
(2)把该函数的图象沿y轴向下平移多少个单位长度后,得到的函数的图象与x轴只有一个公共点?
如图,在边长为1的正方形组成的网格中,△AOB的顶点均在格点上,点A、B的坐标分别是A(3,2)、B(1,3).将△AOB绕点O逆时针旋转90°后得到△A1OB1.
(1)画出旋转后的A1OB1;
(2)直接写出点A1、B1的坐标分别为 、 ;
(3)试求A1OB1的面积.
解方程
(1)(2x-1)2=x(3x+2)-7
(2)x2-3x-1=0.
某市出租车收费标准是:起步价10元,3千米后每千米1.20元,
(1)若某人乘坐了x(x>3)千米的路程,则他应支付的费用是多少?
(2)若他支付了16元车费,你能算出他乘坐的路程吗?