如图,小区规划在一个长56米,宽26米的长方形场地上修建三条同样宽的甬道,使其中两条与AB平行,另一条与BC平行,场地的其余部分种草,甬道的宽度为x米.
(1)用含x的代数式表示草坪的总面积S= ;
(2)如果每一块草坪的面积都相等,且甬道的宽为2米,那么每块草坪的面积是多少平方米?
抛物线 与 轴相交于 , , , 两点,与 轴交于点 .
(1)设 , ,求该抛物线的解析式;
(2)在(1)中,若点 为直线 下方抛物线上一动点,当 的面积最大时,求点 的坐标;
(3)是否存在整数 , 使得 和 同时成立,请证明你的结论.
如图1,在平面直角坐标系, 为坐标原点,点 ,点 .
(1)求 的度数;
(2)如图1,将 绕点 顺时针旋转得△ ,当 恰好落在 边上时,设△ 的面积为 ,△ 的面积为 , 与 有何关系?为什么?
(3)若将 绕点 顺时针旋转到如图2所示的位置, 与 的关系发生变化了吗?证明你的判断.
【探究函数 y = x + 4 x 的图象与性质】
(1)函数 的自变量 的取值范围是 ;
(2)下列四个函数图象中函数 的图象大致是 ;
(3)对于函数 ,求当 时, 的取值范围.
请将下列的求解过程补充完整.
解:
.
拓展运用
(4)若函数 ,则 的取值范围 .
某校在一次大课间活动中,采用了四种活动形式: 、跑步, 、跳绳, 、做操, 、游戏.全校学生都选择了一种形式参与活动,小杰对同学们选用的活动形式进行了随机抽样调查,根据调查统计结果,绘制了不完整的统计图.
请结合统计图,回答下列问题:
(1)本次调查学生共 人, ,并将条形图补充完整;
(2)如果该校有学生2000人,请你估计该校选择“跑步”这种活动的学生约有多少人?
(3)学校让每班在 、 、 、 四种活动形式中,随机抽取两种开展活动,请用树状图或列表的方法,求每班抽取的两种形式恰好是“跑步”和“跳绳”的概率.
两个城镇 , 与一条公路 ,一条河流 的位置如图所示,某人要修建一避暑山庄,要求该山庄到 , 的距离必须相等,到 和 的距离也必须相等,且在 的内部,请画出该山庄的位置 .(不要求写作法,保留作图痕迹.