通过研究学生的学习行为,心理学家发现,学生的接受能力依赖于教师引入概念和描述问题所用的时间.讲座开始时,学生的兴趣激增;中间有一段不太长的时间,学生的兴趣保持较理想的状态,随后学生的注意力开始分散.分析结果和实验表明,用f(x)表示学生的接受能力,x表示引入概念和描述问题所用的时间(单位:分钟),可有以下的公式:
f(x)=
(1)开讲后多少分钟,学生的接受能力最强?能维持多长时间?
(2)一道数学难题,需要55的接受能力以及13分钟,教师能否及时在学生一直达到所需接受能力的状态下讲授完这道难题?
数列满足
.
(Ⅰ)若是等差数列,求其通项公式;
(Ⅱ)若满足
,
为
的前
项和,求
.
已知向量 与
共线,设函数
。
(1)求函数 的周期及最大值;
(2)已知锐角 △ABC 中的三个内角分别为 A、B、C,若有 ,边 BC=
,
,求 △ABC 的面积.
设集合,
.
(1)求集合;
(2)若关于的不等式
的解集是B,求
的值.
设二次函数,对任意实数
,
恒成立;正数数列
满足
.
(1)求函数的解析式和值域;
(2)试写出一个区间,使得当
时,数列
在这个区间上是递增数列,并说明理由;
(3)若已知,求证:数列
是等比数列
已知函数,当
时取极小值
。
(1)求的解析式;
(2)如果直线与曲线
的图象有三个不同的交点,求实数
的取值范围。