游客
题文

如图,在四棱锥中,平面,底面是菱形,AB=2,

(Ⅰ)求证:平面PAC;
(Ⅱ)若,求所成角的余弦值;

科目 数学   题型 解答题   难度 中等
知识点: 空间向量的应用
登录免费查看答案和解析
相关试题

某市规定,高中学生三年在校期间参加不少于小时的社区服务才合格.教育部门在全市随机抽取200位学生参加社区服务的数据,按时间段(单位:小时)进行统计,其频率分布直方图如图所示.

(1)求抽取的200位学生中,参加社区服务时间不少于90小时的学生人数,并估计从全市高中学生中任意选取一人,其参加社区服务时间不少于90小时的概率;
(2)从全市高中学生(人数很多)中任意选取3位学生,记为3位学生中参加社区服务时间不少于90小时的人数.试求随机变量的分布列和数学期望

已知函数
(1)求函数的最小正周期、最大值及取最大值时自变量的取值集合;
(2)在△ABC中,角A,B,C的对边分别是a,b,c;若a,b,c成等比数列,且,求的值.

选修4—5:不等式选讲
设函数
(Ⅰ)解不等式
(Ⅱ)若,使得,求实数的取值范围.

选修4—4:坐标系与参数方程
已知直线的参数方程为为参数),以坐标原点为极点,轴正半轴为极轴,建立极坐标系,曲线的极坐标方程是
(1)写出直线的极坐标方程与曲线的普通方程;
(2)若点是曲线上的动点,求到直线距离的最小值,并求出此时点的坐标.

选修4-1:几何证明选讲
如图所示,已知为圆的直径,是圆上的两个点,,交

(1)求证:是劣弧的中点;
(2)求证:

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号