学校从参加高二年级期中考试的学生中抽出50名学生,并统计了他们的数学成绩(成绩均为整数且满分为100分),数学成绩分组及各组频数如下:
[40,50),2;[50,60),3;[60,70),14;[70,80),15;[80,90),12;[90,100],4.
分组 |
频数 |
频率 |
[40,50) |
2 |
0.04 |
[50,60) |
3 |
0.06 |
[60,70) |
14 |
0.28 |
[70,80) |
15 |
0.30 |
[80,90) |
A |
B |
[90,100] |
4 |
0.08 |
合计 |
C |
D |
(1)在给出的样本频率分布表中,求的值;
(2)估计成绩在80分以上(含80分)学生的比例;
(3)为了帮助成绩差的学生提高数学成绩,学校决定成立“二帮一”小组,即从成绩在[90,100]的学生中选两位同学,共同帮助成绩在[40,50)中的某一位同学.已知甲同学的成绩为42分,乙同学的成绩为95分,求甲、乙两同学恰好被安排在同一小组的概率.
样本频率分布表如下:
对于三次函数.
定义:(1)设是函数
的导数
的导数,若方程
有实数解
,则称点
为函数
的“拐点”;
定义:(2)设为常数,若定义在
上的函数
对于定义域内的一切实数
,都有
成立,则函数
的图象关于点
对称.
己知,请回答下列问题:
(1)求函数的“拐点”
的坐标
(2)检验函数
的图象是否关于“拐点”
对称,对于任意的三次函数写出一个有关“拐点”的结论(不必证明)
(3)写出一个三次函数,使得它的“拐点”是
(不要过程)
如图,开发商欲对边长为的正方形
地段进行市场开发,拟在该地段的一角建设一个景观,需要建一条道路
(点
分别在
上),根据规划要求
的周长为
.
(1)设,试求
的大小;
(2)欲使的面积最小,试确定点
的位置.
如图,设P是圆上的动点,点
是
在
轴上的投影,
为线段PD上
一点,且
.点
、
.
(1)设在轴上存在定点
,使
为定值,试求
的坐标,并指出定值是多少?
(2)求的最大值,并求此时点
的坐标.
如图,四棱锥中,
是
的中点,
,
,且
,
,又
面
.
(1) 证明:;
(2) 证明:面
;
(3) 求四棱锥的体积.
已知函数,其中
,
的图象与直线
的交点的横坐标成公差为
的等差数列
⑴求的解析式;
⑵若在中,
,
,求
的面积.