游客
题文

学校从参加高二年级期中考试的学生中抽出50名学生,并统计了他们的数学成绩(成绩均为整数且满分为100分),数学成绩分组及各组频数如下:
[40,50),2;[50,60),3;[60,70),14;[70,80),15;[80,90),12;[90,100],4.

分组
频数
频率
[40,50)
2
0.04
[50,60)
3
0.06
[60,70)
14
0.28
[70,80)
15
0.30
[80,90)
A
B
[90,100]
4
0.08
合计
C
D

 
(1)在给出的样本频率分布表中,求的值;
(2)估计成绩在80分以上(含80分)学生的比例;
(3)为了帮助成绩差的学生提高数学成绩,学校决定成立“二帮一”小组,即从成绩在[90,100]的学生中选两位同学,共同帮助成绩在[40,50)中的某一位同学.已知甲同学的成绩为42分,乙同学的成绩为95分,求甲、乙两同学恰好被安排在同一小组的概率.
样本频率分布表如下:

科目 数学   题型 解答题   难度 较难
登录免费查看答案和解析
相关试题

对于三次函数
定义:(1)设是函数的导数的导数,若方程有实数解,则称点为函数的“拐点”;
定义:(2)设为常数,若定义在上的函数对于定义域内的一切实数,都有成立,则函数的图象关于点对称.
己知,请回答下列问题:
(1)求函数的“拐点”的坐标
(2)检验函数的图象是否关于“拐点”对称,对于任意的三次函数写出一个有关“拐点”的结论(不必证明)
(3)写出一个三次函数,使得它的“拐点”是(不要过程)

如图,开发商欲对边长为的正方形地段进行市场开发,拟在该地段的一角建设一个景观,需要建一条道路(点分别在上),根据规划要求的周长为

(1)设,试求的大小;
(2)欲使的面积最小,试确定点的位置.

如图,设P是圆上的动点,点轴上的投影,为线段PD上一点,且.点

(1)设在轴上存在定点,使为定值,试求的坐标,并指出定值是多少?
(2)求的最大值,并求此时点的坐标.

如图,四棱锥中,的中点,,且,又.

(1) 证明:;
(2) 证明:;
(3) 求四棱锥的体积.

已知函数,其中的图象与直线的交点的横坐标成公差为的等差数列
⑴求的解析式;
⑵若在中,,求的面积.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号