游客
题文

如图,抛物线yax2+bx+c经过△ABC的三个顶点,与y轴相交于 ( 0 , 9 4 ) ,点A坐标为 (﹣ 1 , 2 ,点B是点A关于y轴的对称点,点Cx轴的正半轴上.

(1)求该抛物线的函数关系表达式.

(2)点F为线段AC上一动点,过FFEx轴,FGy轴,垂足分别为EG,当四边形OEFG为正方形时,求出F点的坐标.

(3)将(2)中的正方形OEFG沿OC向右平移,记平移中的正方形OEFG为正方形DEFG,当点E和点C重合时停止运动,设平移的距离为t,正方形的边EFAC交于点MDG所在的直线与AC交于点N,连接DM,是否存在这样的t,使△DMN是等腰三角形?若存在,求t的值;若不存在请说明理由.

科目 数学   题型 解答题   难度 较难
知识点: 二次函数的性质 待定系数法求二次函数解析式 二次函数综合题
登录免费查看答案和解析
相关试题

如图,AB∥DE,AC∥DF,BE=CF.求证:AB=DE.

如图,在△ABC中,∠ADB=100°,∠C=80°,∠BAD=∠CAD,求∠BED的度数.

如图,隧道的截面由抛物线和长方形构成,长方形的长是12m,宽是4m.按照图中所示的直角坐标系,抛物线可以用表示,且抛物线上的点C到墙面OB的水平距离为3m,到地面OA的距离为m.

(1)求该抛物线的函数关系式,并计算出拱顶D到地面OA的距离;
(2)一辆货运汽车载一长方体集装箱后高为6m,宽为4m,如果隧道内设双向行车道,那么这辆货车能否安全通过?
(3)在抛物线型拱壁上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8m,那么两排灯的水平距离最小是多少米?

某公司经销一种绿茶,每千克成本为50元.市场调查发现,在一段时间内,销售量w(千克)随销售单价x(元/千克)的变化而变化,具体关系式为:,且物价部门规定这种绿茶的销售单价不得高于90元/千克.设这种绿茶在这段时间内的销售利润为y(元),解答下列问题:
(1)求出y与x之间的函数关系式;
(2)当x取何值时,y的值最大?最大值为多少?
(3)如果公司想要在这段时间内获得2250元的销售利润,销售单价应定为多少元?

如图,在△ABC中,∠ABC=90°,D是边AC上的一点,连接BD,使∠A=2∠1,E是BC上的一点,以BE为直径的圆O经过点D

(1)求证:AC是⊙O的切线;
(2)若∠A=60°,⊙O的半径为2,求阴影部分的面积(结果保留根号和π).

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号