游客
题文

如图,抛物线yax2+bx+c经过△ABC的三个顶点,与y轴相交于 ( 0 , 9 4 ) ,点A坐标为 (﹣ 1 , 2 ,点B是点A关于y轴的对称点,点Cx轴的正半轴上.

(1)求该抛物线的函数关系表达式.

(2)点F为线段AC上一动点,过FFEx轴,FGy轴,垂足分别为EG,当四边形OEFG为正方形时,求出F点的坐标.

(3)将(2)中的正方形OEFG沿OC向右平移,记平移中的正方形OEFG为正方形DEFG,当点E和点C重合时停止运动,设平移的距离为t,正方形的边EFAC交于点MDG所在的直线与AC交于点N,连接DM,是否存在这样的t,使△DMN是等腰三角形?若存在,求t的值;若不存在请说明理由.

科目 数学   题型 解答题   难度 较难
知识点: 二次函数的性质 待定系数法求二次函数解析式 二次函数综合题
登录免费查看答案和解析
相关试题

二次函数的图象经过点A(3,0),B(2,-3),并且以为对称轴.

(1)求此函数的解析式;
(2)在对称轴上是否存在一点P,使PA=PB,若存在,求出P点的坐标,若不存在,说明理由.

如图,方格纸中每个小正方形的边长都是单位1,△ABC的三个顶点都在格点上,结合所给的平面直角坐标系解答下列问题:

(1)将△ABC向右平移3个单位长度再向下平移2个单位长度,画出两次平移后的△A1B1C1
(2)写出A1、C1的坐标;
(3)将△A1B1C1绕C1逆时针旋转90°,画出旋转后的△A2B2C1,求线段B1C1旋转过程中扫过的面积(结果保留).

先化简,再求值:,其中.

如图,抛物线经过点A(1,0),与y轴交于点B.

(1)求抛物线的解析式;
(2)P是y轴正半轴上一点,且△PAB是以AB为腰的等腰三角形,试求点P的坐标.

某批发商以每件50元的价格购进400件T恤.若以单价70元销售,预计可售出200件.批发商的销售策略是:第一个月为增加销售量,降价销售,经过市场调查,单价每降低0.5元,可多售出5件,但最低单价不低于购进的价格;第一个月结束后,将剩余的T恤一次性清仓销售,清仓时单价为40元.设第一个月单价降低x元.
(1)根据题意,完成下表:

(2)T恤的销售单价定为多少元时,该批发商可获得最大利润?最大利润为多少?

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号