游客
题文

甲、乙两运动员的射击成绩(靶心为10环)统计如下表(不完全) :

运动员

环数

次数

1

2

3

4

5

10

8

9

10

8

10

9

9

a

b

某同学计算出了甲的成绩平均数是9,方差是

S 2 = 1 5 [ ( 10 9 ) 2 + ( 8 9 ) 2 + ( 9 9 ) 2 + ( 10 9 ) 2 + 8 9 ) 2 = 0 . 8 ,请作答:

(1)在图中用折线统计图将甲运动员的成绩表示出来;

(2)若甲、乙射击成绩平均数都一样,则 a + b =   

(3)在(2)的条件下,当甲比乙的成绩较稳定时,请列举出 a b 的所有可能取值,并说明理由.

科目 数学   题型 解答题   难度 中等
知识点: 算术平均数 方差 折线统计图
登录免费查看答案和解析
相关试题

在平面直角坐标系 xOy 中, O 的半径为1.对于点 A 和线段 BC ,给出如下定义:若将线段 BC 绕点 A 旋转可以得到 O 的弦 B ' C ' ( B ' C ' 分别是 B C 的对应点),则称线段 BC O 的以点 A 为中心的“关联线段”.

(1)如图,点 A B 1 C 1 B 2 C 2 B 3 C 3 的横、纵坐标都是整数.在线段 B 1 C 1 B 2 C 2 B 3 C 3 中, O 的以点 A 为中心的“关联线段”是   B 2 C 2  

(2) ΔABC 是边长为1的等边三角形,点 A ( 0 , t ) ,其中 t 0 .若 BC O 的以点 A 为中心的“关联线段”,求 t 的值;

(3)在 ΔABC 中, AB = 1 AC = 2 .若 BC O 的以点 A 为中心的“关联线段”,直接写出 OA 的最小值和最大值,以及相应的 BC 长.

如图,在 ΔABC 中, AB = AC BAC = α M BC 的中点,点 D MC 上,以点 A 为中心,将线段 AD 顺时针旋转 α 得到线段 AE ,连接 BE DE

(1)比较 BAE CAD 的大小;用等式表示线段 BE BM MD 之间的数量关系,并证明;

(2)过点 M AB 的垂线,交 DE 于点 N ,用等式表示线段 NE ND 的数量关系,并证明.

在平面直角坐标系 xOy 中,点 ( 1 , m ) 和点 ( 3 , n ) 在抛物线 y = a x 2 + bx ( a > 0 ) 上.

(1)若 m = 3 n = 15 ,求该抛物线的对称轴;

(2)已知点 ( - 1 , y 1 ) ( 2 , y 2 ) ( 4 , y 3 ) 在该抛物线上.若 mn < 0 ,比较 y 1 y 2 y 3 的大小,并说明理由.

为了解甲、乙两座城市的邮政企业4月份收入的情况,从这两座城市的邮政企业中,各随机抽取了25家邮政企业,获得了它们4月份收入(单位:百万元)的数据,并对数据进行整理、描述和分析.下面给出了部分信息.

a .甲城市邮政企业4月份收入的数据的频数分布直方图如下(数据分成5组: 6 x < 8 8 x < 10 10 x < 12 12 x < 14 14 x 16 ) :

b .甲城市邮政企业4月份收入的数据在 10 x < 12 这一组的是:

10.0 10.0 10.1 10.9 11.4 11.5 11.6 11.8

c .甲、乙两座城市邮政企业4月份收入的数据的平均数、中位数如下:

平均数

中位数

甲城市

10.8

m

乙城市

11.0

11.5

根据以上信息,回答下列问题:

(1)写出表中 m 的值;

(2)在甲城市抽取的邮政企业中,记4月份收入高于它们的平均收入的邮政企业的个数为 p 1 .在乙城市抽取的邮政企业中,记4月份收入高于它们的平均收入的邮政企业的个数为 p 2 .比较 p 1 p 2 的大小,并说明理由;

(3)若乙城市共有200家邮政企业,估计乙城市的邮政企业4月份的总收入(直接写出结果).

如图, O ΔABC 的外接圆, AD O 的直径, AD BC 于点 E

(1)求证: BAD = CAD

(2)连接 BO 并延长,交 AC 于点 F ,交 O 于点 G ,连接 GC .若 O 的半径为5, OE = 3 ,求 GC OF 的长.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号