如图,某学校体育场看台的顶端 到地面的垂直距离 为 ,看台所在斜坡 的坡比 ,在点 处测得旗杆顶点 的仰角为 ,在点 处测得旗杆顶点 的仰角为 ,且 , , 三点在同一水平线上,求旗杆 的高度.(结果精确到 ,参考数据: ,
公司生产A、B两种型号的扫地机器人,为了解它们的扫地质量,工作人员从某月生产的A、B型扫地机器人中各随机抽取10台,在完全相同条件下试验,记录下它们的除尘量的数据(单位:g),并进行整理、描述和分析(除尘量用 表示,共分为三个等级:合格 ,良好 ,优秀 ),下面给出了部分信息:
10台A型扫地机器人的除尘量:83,84,84,88,89,89,95,95,95,98.
10台B型扫地机器人中“良好”等级包含的所有数据为:85,90,90,90,94
抽取的A、B型扫地机器人除尘量统计表
型号 |
平均数 |
中位数 |
众数 |
方差 |
“优秀”等级所占百分比 |
A |
90 |
89 |
a |
26.6 |
40% |
B |
90 |
b |
90 |
30 |
30% |
根据以上信息,解答下列问题:
(1)填空:a= ,b= ,m= ;
(2)这个月公司可生产B型扫地机器人共3000台,估计该月B型扫地机器人“优秀”等级的台数;
(3)根据以上数据,你认为该公司生产的哪种型号的扫地机器人扫地质量更好?请说明理由(写出一条理由即可).
在学习矩形的过程中,小明遇到了一个问题:在矩形ABCD中,E是AD边上的一点,试说明△BCE的面积与矩形ABCD的面积之间的关系.他的思路是:首先过点E作BC的垂线,将其转化为证明三角形全等,然后根据全等三角形的面积相等使问题得到解决.请根据小明的思路完成下面的作图与填空:
证明:用直尺和圆规,过点E作BC的垂线EF,垂足为F(只保留作图痕迹).
在△BAE和△EFB中,
∵EF⊥BC,
∴∠EFB=90°.
又∠A=90°,
∴ ①
∵AD∥BC,
∴ ②
又 ③
∴△BAE≌△EFB(AAS).
同理可得 ④
∴ .
在平面直角坐标系中,抛物线 与 轴相交于点 (点 在点 的左侧),与 轴相交于点 ,连接 .
(1)求点 ,点 的坐标;
(2)如图1,点 在线段 上(点 不与点 重合),点 在 轴负半轴上, ,连接 ,设 的面积为 , 的面积为 , ,当 取最大值时,求 的值;
(3)如图2,抛物线的顶点为 ,连接 ,点 在第一象限的抛物线上, 与 相交于点 ,是否存在点 ,使 ,若存在,请求出点P的坐标;若不存在,请说明理由.
综合与实践
问题情境:数学活动课上,王老师出示了一个问题:
如图1,在 中, 是 上一点, .求证 .
独立思考:(1)请解答王老师提出的问题.
实践探究:(2)在原有问题条件不变的情况下,王老师增加下面的条件,并提出新问题,请你解答.
“如图2,延长 至点 ,使 , 与 的延长线相交于点 ,点 分别在 上, .在图中找出与 相等的线段,并证明.”
问题解决:(3)数学活动小组同学对上述问题进行特殊化研究之后发现,当 时,若给出 中任意两边长,则图3中所有已经用字母标记的线段长均可求.该小组提出下面的问题,请你解答.
“如图3,在(2)的条件下,若 ,求 的长.”
如图,在 中, , ,点 在 上, ,连接 , ,点 是边 上一动点(点 不与点 重合),过点 作 的垂线,与 相交于点 ,连接 ,设 , 与 重叠部分的面积为 .
(1)求 的长;
(2)求 关于 的函数解析式,并直接写出自变量 的取值范围.