对于坐标平面内的点,现将该点向右平移1个单位,再向上平移2个单位,这种点的运动称为点 的斜平移,如点 经1次斜平移后的点的坐标为 ,已知点 的坐标为 .
(1)分别写出点 经1次,2次斜平移后得到的点的坐标.
(2)如图,点 是直线 上的一点,点 关于点 的对称点为点 ,点 关于直线 的对称点为点 .
①若 、 、 三点不在同一条直线上,判断 是否是直角三角形?请说明理由.
②若点 由点 经 次斜平移后得到,且点 的坐标为 ,求出点 的坐标及 的值.
已知抛物线 的顶点为 ,与 轴的交点为 ,点 .
(Ⅰ) 求点 , 的坐标;
(Ⅱ) 将抛物线 向上平移得到抛物线 ,点 平移后的对应点为 ,且 .
①求抛物线 的解析式;
②若点 关于直线 的对称点为 ,射线 与抛物线 相交于点 ,求点 的坐标 .
在平面直角坐标系中, 为原点,点 ,点 ,把 绕点 逆时针旋转,得△ ,点 , 旋转后的对应点为 , ,记旋转角为 .
(Ⅰ)如图①,若 ,求 的长;
(Ⅱ)如图②,若 ,求点 的坐标;
(Ⅲ)在(Ⅱ)的条件下,边 上 的一点 旋转后的对应点为 ,当 取得最小值时,求点 的坐标(直接写出结果即可)
公司有330台机器需要一次性运送到某地,计划租用甲、乙两种货车共8辆,已知每辆甲种货车一次最多运送机器45台、租车费用为400元,每辆乙种货车一次最多运送机器30台、租车费用为280元
(Ⅰ)设租用甲种货车 辆 为非负整数),试填写表格.
表一:
租用甲种货车的数量 辆 |
3 |
7 |
|
租用的甲种货车最多运送机器的数量 台 |
135 |
|
|
租用的乙种货车最多运送机器的数量 台 |
150 |
|
|
表二:
租用甲种货车的数量 辆 |
3 |
7 |
|
租用甲种货车的费用 元 |
|
2800 |
|
租用乙种货车的费用 元 |
|
280 |
|
(Ⅱ)给出能完成此项运送任务的最节省费用的租车方案,并说明理由.
小明上学途中要经过 , 两地,由于 , 两地之间有一片草坪,所以需要走路线 , ,如图,在 中, , , ,求 , 的长.(结果保留小数点后一位)
参考数据: , , , 取1.414.
在 中, 为直径, 为 上一点.
(Ⅰ)如图1.过点 作 的切线,与 的延长线相交于点 ,若 ,求 的大小;
(Ⅱ)如图2, 为 上一点,且 经过 的中点 ,连接 并延长,与 的延长线相交于点 ,若 ,求 的大小.