如图, 的直角边 在 轴上,顶点 的坐标为 ,直线 交 于点 ,交 轴于点 .
(1)求直线 的函数表达式;
(2)动点 在 轴上从点 出发,以每秒1个单位的速度向 轴正方向运动,过点 作直线 垂直于 轴,设运动时间为 .
①点 在运动过程中,是否存在某个位置,使得 ,若存在,请求出点 的坐标;若不存在,请说明理由;
②请探索当 为何值时,在直线 上存在点 ,在直线 上存在点 ,使得以 为一边, , , , 为顶点的四边形为菱形,并求出此时 的值.
为庆祝中国共产党建党100周年,某校举行了“红色华诞,党旗飘扬”党史知识竞赛.为了解竞赛成绩,抽样调查了七、八年级部分学生的分数,过程如下:
(1)收集数据.
从该校七、八年级学生中各随机抽取20名学生的分数,其中八年级的分数如下:
81 83 84 85 86 87 87 88 89 90
92 92 93 95 95 95 99 99 100 100
(2)整理、描述数据.
按下表分段整理描述样本数据:
分数 人数 年级 |
|
|
|
|
七年级 |
4 |
6 |
2 |
8 |
八年级 |
3 |
|
4 |
7 |
(3)分析数据.
两组样本数据的平均数中位数、众数、方差如表所示:
年级 |
平均数 |
中位数 |
众数 |
方差 |
七年级 |
91 |
89 |
97 |
40.9 |
八年级 |
91 |
|
|
33.2 |
根据以上提供的信息,解答下列问题:
①填空: , , ;
②样本数据中,七年级甲同学和八年级乙同学的分数都为90分, 同学的分数在本年级抽取的分数中从高到低排序更靠前(填“甲”或“乙” ;
③从样本数据分析来看,分数较整齐的是 年级(填“七”或“八” ;
④如果七年级共有400人参赛,则该年级约有 人的分数不低于95分.
如图,建筑物 上有一旗杆 ,从与 相距 的 处观测旗杆顶部 的仰角为 ,观测旗杆底部 的仰角为 ,求旗杆 的高度(结果保留小数点后一位.参考数据: , , , .
抛物线 交 轴于 , 两点 在 的左边).
(1) 的顶点 在 轴的正半轴上,顶点 在 轴右侧的抛物线上;
①如图(1),若点 的坐标是 ,点 的横坐标是 ,直接写出点 , 的坐标.
②如图(2),若点 在抛物线上,且 的面积是12,求点 的坐标.
(2)如图(3), 是原点 关于抛物线顶点的对称点,不平行 轴的直线 分别交线段 , (不含端点)于 , 两点.若直线 与抛物线只有一个公共点,求证: 的值是定值.
问题提出
如图(1),在 和 中, , , ,点 在 内部,直线 与 于点 .线段 , , 之间存在怎样的数量关系?
问题探究
(1)先将问题特殊化如图(2),当点 , 重合时,直接写出一个等式,表示 , , 之间的数量关系;
(2)再探究一般情形如图(1),当点 , 不重合时,证明(1)中的结论仍然成立.
问题拓展
如图(3),在 和 中, , , 是常数),点 在 内部,直线 与 交于点 .直接写出一个等式,表示线段 , , 之间的数量关系.
在“乡村振兴”行动中,某村办企业以 , 两种农作物为原料开发了一种有机产品. 原料的单价是 原料单价的1.5倍,若用900元收购 原料会比用900元收购 原料少 .生产该产品每盒需要 原料 和 原料 ,每盒还需其他成本9元.市场调查发现:该产品每盒的售价是60元时,每天可以销售500盒;每涨价1元,每天少销售10盒.
(1)求每盒产品的成本(成本 原料费 其他成本);
(2)设每盒产品的售价是 元 是整数),每天的利润是 元,求 关于 的函数解析式(不需要写出自变量的取值范围);
(3)若每盒产品的售价不超过 元 是大于60的常数,且是整数),直接写出每天的最大利润.