有一块正方形 , 所在直线是一条小河,收获的蔬菜可送到 点或河边运走.于是,菜地分别为两个区域 和 ,其中 中的蔬菜运到河边较近, 中的蔬菜运到 点较近,而菜地内 和 的分界线 上的点到河边与到 点的距离相等,现建立平面直角坐标系,其中原点 为 的中点,点 的坐标为 ,如图
(1)求菜地内的分界线 的方程;
(2)菜农从蔬菜运量估计出 面积是 面积的两倍,由此得到 面积的经验值为 .设 是 上纵坐标为1的点,请计算以 为一边,另一边过点 的矩形的面积,及五边形 的面积,并判断哪一个更接近于 面积的“经验值”.
一个盒子里装有三张卡片,分别标记有数字1,2,3,这三张卡片除标记的数字外完全相同.随机有放回地抽取3次,每次抽取1张,将抽取的卡片上的数字依次记为a,b,c.
(1)求“抽取的卡片上的数字满足a+b=c”的概率;
(2)求“抽取的卡片上的数字a,b,c不完全相同”的概率.
已知的展开式中,各项系数和与它的二项式系数和的比为32.
(1)求展开式中二项式系数最大的项;
(2)求展开式中系数最大的项.
选修4-5:不等式选讲
设函数的最小值为
.
(1)求;
(2)已知两个正数m,n满足,求
的最小值。
选修4-4:极坐标系与参数方程
极坐标系的极点为直角坐标系的原点,极轴为x轴的正半轴,两坐标系的长度单位相同。已知曲线C的极坐标方程为
,斜率为
的直线
交y轴于点E(0,1).
(1)求曲线C的直角坐标方程,直线的参数方程;
(2)若直线与曲线C交于A,B两点,求
的值。
已知函数f(x)=xln x,g(x)=-x2+ax-2(e为自然对数的底数,a∈R).
(1)判断曲线y=f(x)在点(1,f(1))处的切线与曲线y=g(x)的公共点个数;
(2)当时,若函数y=f(x)-g(x)有两个零点,求
的取值范围.