如图, 的半径为6,将该圆周12等分后得到表盘模型,其中整钟点为 为 的整数),过点 作 的切线交 延长线于点 .
(1)通过计算比较直径和劣弧 长度哪个更长;
(2)连接 ,则 和 有什么特殊位置关系?请简要说明理由;
(3)求切线长 的值.
如图所示,在平面直角坐标系 中,等腰 的边 与反比例函数 的图象相交于点 ,其中 ,点 在 轴的正半轴上,点 的坐标为 ,过点 作 轴于点 .
(1)已知一次函数的图象过点 , ,求该一次函数的表达式;
(2)若点 是线段 上的一点,满足 ,过点 作 轴于点 ,连结 ,记 的面积为 ,设 ,
①用 表示 (不需要写出 的取值范围);
②当 取最小值时,求 的值.
如图所示,已知正方形 的顶点 为正方形 对角线 、 的交点,连接 、 .
(1)求证: ;
(2)若 ,正方形 的边长为2,线段 与线段 相交于点 , ,求正方形 的边长.
某甜品店计划订购一种鲜奶,根据以往的销售经验,当天的需求量与当天的最高气温 有关,现将去年六月份(按30天计算)的有关情况统计如下:
(最高气温与需求量统计表)
最高气温 (单位: |
需求量(单位:杯) |
|
200 |
|
250 |
|
400 |
(1)求去年六月份最高气温不低于 的天数;
(2)若以最高气温位于各区间的频率估计最高气温位于该区间的概率,求去年六月份这种鲜奶一天的需求量不超过200杯的概率;
(3)若今年六月份每天的进货量均为350杯,每杯的进价为4元,售价为8元,未售出的这种鲜奶厂家以1元的价格收回销毁,假设今年与去年的情况大致一样,若今年六月份某天的最高气温 满足 (单位: ,试估计这一天销售这种鲜奶所获得的利润为多少元?
小强的爸爸准备驾车外出.启动汽车时,车载报警系统显示正前方有障碍物,此时在眼睛点 处测得汽车前端 的俯角为 ,且 ,若直线 与地面 相交于点 ,点 到地面 的垂线段 的长度为1.6米,假设眼睛 处的水平线 与地面 平行.
(1)求 的长度;
(2)假如障碍物上的点 正好位于线段 的中点位置(障碍物的横截面为长方形,且线段 为此长方形前端的边), ,若小强的爸爸将汽车沿直线 后退0.6米,通过汽车的前端 点恰好看见障碍物的顶部 点(点 为点 的对应点,点 为点 的对应点),求障碍物的高度.
先化简,再求值: ,其中 .