游客
题文

在直角坐标系 xOy 中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为 ρ = 2 2 cos θ

(1)将C的极坐标方程化为直角坐标方程;

(2)设点A的直角坐标为 1 , 0 MC上的动点,点P满足 AP = 2 AM ,写出Р的轨迹 C 1 的参数方程,并判断C C 1 是否有公共点.

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

已知下列三个方程:至少有一个方程有实数根.求实数的取值范围.

设命题p:实数x满足,其中,命题实数满足.
(1)若为真,求实数的取值范围;
(2)若的充分不必要条件,求实数a的取值范围.

已知中心在坐标原点,焦点在轴上的椭圆过点,且它的离心率.

(1)求椭圆的标准方程;
(2)与圆相切的直线交椭圆于两点,若椭圆上一点满足,求实数的取值范围.

已知在四棱锥P-ABCD中,底面ABCD是矩形,且AD=2,AB=1,PA⊥平面ABCD,E、F分别是线段AB、BC的中点.

(1)证明:PF⊥FD;
(2)判断并说明PA上是否存在点G,使得EG∥平面PFD;
(3)若PB与平面ABCD所成的角为45°,求二面角A-PD-F的余弦值.

已知圆C:x2+y2+2x-4y+3=0.
(1)若圆C的切线在x轴和y轴上的截距相等,求此切线的方程;
(2)从圆C外一点P(x1,y1)向该圆引一条切线,切点为M,O为坐标原点,且有|PM|=|PO|,求使得|PM|取得最小值的点P的坐标.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号