游客
题文

如图,已知F是抛物线 y 2 = 2 p x ( p > 0 ) 的焦点, M 是抛物线的准线与x轴的交点,且 M F = 2

(1)求抛物线的方程;

(2)设过点F的直线交抛物线与A、B两点,斜率为2的直线l与直线 MA , M B , A B x 轴依次交于点P,Q,R,N,且 R N 2 = P N · Q N ,求直线 L x 轴上截距的范围。

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

(本小题满分12分)
如图,在斜边为AB的Rt△ABC,过A作PA⊥平面ABC,AE⊥PB于E,AF⊥PC于F.

(1)求证:BC⊥平面PAC.
(2)求证:PB⊥平面AEF.
(3)若AP=AB=2,试用tgθ(∠BPC=θ)表示△AEF的面积、当tgθ取何值时,△AEF的面积最大?最大面积是多少?

(本小题满分12分)
如图,DC⊥平面ABCEBDCACBCEB=2DC=2,∠ACB=120°,PQ分别为AEAB的中点.

(1)证明:PQ∥平面ACD
(2)求AD与平面ABE所成角的正弦值.

(本小题满分12分)
P为正方形ABCD所在平面外一点,PA⊥面ABCD,AE⊥PB,求证:AE⊥PC.

(本小题满分13分)
在△ABC中,ABAC=5,BC=6,PA⊥平面ABCPA=8,求点PBC的距离.

(本小题满分13分)
空间四边形中,分别是的中点,,求异面直线所成的角.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号