某工厂有甲、乙两个车间,甲车间生产 产品,乙车间生产 产品,去年两个车间生产产品的数量相同且全部售出.已知 产品的销售单价比 产品的销售单价高100元,1件 产品与1件 产品售价和为500元.
(1) 、 两种产品的销售单价分别是多少元?
(2)随着 时代的到来,工业互联网进入了快速发展时期.今年,该工厂计划依托工业互联网将乙车间改造为专供用户定制 产品的生产车间.预计 产品在售价不变的情况下产量将在去年的基础上增加 ; 产品产量将在去年的基础上减少 ,但 产品的销售单价将提高 .则今年 、 两种产品全部售出后总销售额将在去年的基础上增加 .求 的值.
在直角坐标系中,A(0,4),B(4,0).点C从点B出发沿BA方向以每秒2个单位的速度向点A匀速运动,同时点D从点A出发沿AO方向以每秒1个单位的速度向点O匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点C、D运动的时间是t秒(t>0).过点C作CE⊥BO于点E,连结CD、DE.
⑴ 当t为何值时,线段CD的长为4;
⑵ 当线段DE与以点O为圆心,半径为的⊙O有两个公共交点时,求t的取值范围;
⑶ 当t为何值时,以C为圆心、CB为半径的⊙C与⑵中的⊙O相切?
如图,在直角坐标系xOy中,正方形OCBA的顶点A,C分别在y轴,x轴上,点B坐标为(6,6),抛物线y=ax2+bx+c经过点A,B两点,且3a-b=-1.
(1)求a,b,c的值;
(2)如果动点E,F同时分别从点A,点B出发,分别沿A→B,B→C运动,速度都是每秒1个单位长度,当点E到达终点B时,点E,F随之停止运动,设运动时间为t秒,△EBF的面积为S.
①试求出S与t之间的函数关系式,并求出S的最大值;
②当S取得最大值时,在抛物线上是否存在点R,使得以E,B,R,F为顶点的四边形是平行四边形?如果存在,求出点R的坐标;如果不存在,请说明理由.
已知A、B两地相距300千米,甲、乙两车同时从A地出发,以各自的速度匀速往返两地,甲车先到达B地,停留1小时后按原路返回.设两车行驶的时间为x小时,离开A地的距离是y千米,如图是y与x的函数图象.
(1)计算甲车的速度为千米/时,乙车的速度为千米/时;
(2)几小时后两车相遇;
(3)在从开始出发到两车相遇的过程中,设两车之间的距离为S千米,乙车行驶的时间为t小时,求S与t之间的函数关系式.
“初中生骑电动车上学”的现象越来越受到社会的关注,某校利用“十一”假期,随机抽查了本校若干名学生和部分家长对“初中生骑电动车上学”现象的看法,统计整理制作了如下的统计图,请回答下列问题:
(1)这次抽查的家长总人数是多少?
(2)请补全条形统计图和扇形统计图;
(3)从这次接受调查的学生中,随机抽查一个学生恰好抽到持“无所谓”态度的概率多少?
有两个可以自由转动的均匀转盘A,B都被分成了3等分,并在每一份内均标有数字,如图所示,规则如下:①分别转动转盘A,B;②两个转盘停止后观察两个指针所指份内的数字(若指针停在等分线上,那么重转一次,直到指针指向某一份内为止).
(1)请用树状图或列表法列出所有可能的结果;
(2)王磊和张浩想用这两个转盘做游戏,他们规定:若“两个指针所指的数字都是方程x2-5x+6=0的解”时,王磊得1分;若“两个指针所指的数字都不是方程x2-5x+6=0的解”时,张浩得3分,这个游戏公平吗?为什么?