已知点 A(−2,0), B(2,0),动点 M( x, y)满足直线 AM与 BM的斜率之积为− 1 2 .记 M的轨迹为曲线 C.
(1)求 C的方程,并说明 C是什么曲线;
(2)过坐标原点的直线交 C于 P, Q两点,点 P在第一象限, PE⊥ x轴,垂足为 E,连结 QE并延长交 C于点 G.
(i)证明: △ PQG 是直角三角形;
(ii)求 △ PQG 面积的最大值.
设函数. (1)对于任意实数,恒成立,求的最大值; (2)若方程有且仅有一个实根,求的取值范围。
如图,在直三棱柱ABC—A1B1C1中,,,直线B1C与平面ABC成30°角。
(1)求证:平面B1AC⊥平面ABB1A1;
己知点P在抛物线上运动,Q点的坐标是(-1,2),O是坐标原点,四边形OPQR是平行四边形(O、P、Q、R顺序按逆时针),求R点的轨迹方程。
已知p: |1-|≤2,q::x2-2x+1-m2≤0(m>0),若是的必要而不充分条件,求实数m的取值范围.
已知函数,. (I)讨论的单调性. (II)当时,讨论关于的方程的实根的个数.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号