已知点 A(−2,0), B(2,0),动点 M( x, y)满足直线 AM与 BM的斜率之积为− .记 M的轨迹为曲线 C.
(1)求 C的方程,并说明 C是什么曲线;
(2)过坐标原点的直线交 C于 P, Q两点,点 P在第一象限, PE⊥ x轴,垂足为 E,连结 QE并延长交 C于点 G.
(i)证明: 是直角三角形;
(ii)求 面积的最大值.
(本小题满分10分),
求,
,(
)
(本小题满分10分)解下列的方程、方程组及不等式组:
(1);
(2)
(本小题14分)已知直线与椭圆
相交于A、B两点,
且线段AB的中点在直线上.
(1)求此椭圆的离心率;
(2)若椭圆的右焦点关于直线的对称点的在圆
上,求此椭圆的方程.
(本小题满分13分)
如图,在四棱锥中,底面
四边长为1的菱形,
,
,
,
为
的中点,
为
的中点
(Ⅰ)证明:直线;
(Ⅱ)求异面直线AB与MD所成角的大小;
(Ⅲ)求点B到平面OCD的距离。
(本小题满分12分)
命题p:实数x满足x2-4ax+3a2<0,其中a<0,命题q:实数x满足x2-x-6≤0,且q是p的必要不充分条件,求a的取值范围.