电影公司随机收集了电影的有关数据,经分类整理得到下表:
电影类型 |
第一类 |
第二类 |
第三类 |
第四类 |
第五类 |
第六类 |
电影部数 |
140 |
50 |
300 |
200 |
800 |
510 |
好评率 |
0.4 |
0.2 |
0.15 |
0.25 |
0.2 |
0.1 |
好评率是指:一类电影中获得好评的部数与该类电影的部数的比值.
假设所有电影是否获得好评相互独立.
(Ⅰ)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率;
(Ⅱ)从第四类电影和第五类电影中各随机选取1部,估计恰有1部获得好评的概率;
(Ⅲ)假设每类电影得到人们喜欢的概率与表格中该类电影的好评率相等,用" "表示第 k类电影得到人们喜欢," "表示第 k类电影没有得到人们喜欢( k=1,2,3,4,5,6).写出方差 , , , , , 的大小关系.
在△ABC中,角A,B,C的对边分别为,且A,B,C成等差数列。
(1)若,
,求△ABC的面积;
(2)若成等比数列,试判断△ABC的形状。
已知直线l1:x+my+6=0,l2:(m-2)x+3y+2m=0,
求m的值,使得:(1)l1⊥l2;(2) l1∥l2
在等差数列中,
,
,记数列
的前
项和为
.
(1)求数列的通项公式;
(2)是否存在正整数、
,且
,使得
、
、
成等比数列?若存在,求出所有符合条件的
、
的值;若不存在,请说明理由.
已知集合,
,
(1)若,求
的取值范围;
(2)是否存在实数使得
?若存在求出
的取值范围;若不存在,请说明理由.
如图,为圆
的直径,
为圆周上异于
、
的一点,
垂直于圆
所在的平面,
于
点,
于点
.
(1)求证:平面
;
(2)若,
,求四面体
的体积.