游客
题文

对于数列 u n 若存在常数M>0,对任意的 n N * ,恒有 u n + 1 - u n + u n - u n - 1 + . . . + u 2 - u 1 M 则称数列 u n 为B-数列

(1)首项为1,公比为 q ( q < 1 ) 的等比数列是否为B-数列?请说明理由;

请以其中一组的一个论断条件,另一组中的一个论断为结论组成一个命题

判断所给命题的真假,并证明你的结论;

(2)设 S n 是数列 x n 的前 n 项和,给出下列两组论断;

A组:①数列 x n 是B-数列      ②数列 x n 不是B-数列

B组:③数列 S n 是B-数列      ④数列 S n 不是B-数列

请以其中一组中的一个论断为条件,另一组中的一个论断为结论组成一个命题。

判断所给命题的真假,并证明你的结论;

(3)若数列 a n , b n 都是 B - 数列,证明:数列 a n b n 也是 B - 数列。

科目 数学   题型 解答题   难度 较难
登录免费查看答案和解析
相关试题

已知函数∈R且),.
(Ⅰ)若,且函数的值域为[0, +),求的解析式;
(Ⅱ)在(Ⅰ)的条件下,当x∈[-2 , 2 ]时,是单调函数,求实数k的取值范围;
(Ⅲ)设, 且是偶函数,判断能否大于零?

(满分16分)
某医药研究所开发一种新药,据检测,如果成人按规定的剂量服用,服药后每毫升血液中的含药量为(微克)与服药后的时间(小时)之间近似满足如图所示的曲线,其中OA 是线段,曲线 ABC 是函数)的图象,且是常数.

(1)写出服药后y与x的函数关系式;
(2)据测定:每毫升血液中含药量不少于2 微克时治疗疾病有效.若某病人第一次服药时间为早上 6 : 00 ,为了保持疗效,第二次服药最迟应该在当天的几点钟?
(3)若按(2)中的最迟时间服用第二次药,则第二次服药3个小时后,该病人每毫升血液中含药量为多少微克。(结果用根号表示)

已知函数其中
.
(1)求函数的定义域,判断的奇偶性,并说明理由;
(2)若,求使成立的的集合

函数的定义域为集合A,关于x的不等式R)的解集为B,求使的实数a取值范围

=3,计算:(1)
(2)

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号