如图,在平面直角坐标系xOy中,椭圆C: x 2 a 2 + y 2 b 2 = 1 ( a > b > 0 ) 的焦点为F 1(-1、0),F 2(1,0).过F 2作x轴的垂线l ,在x轴的上方,l与圆F 2: ( x - 1 ) 2 + y 2 = 4 a 2 交于点A ,与椭圆C交于点D.连结AF 1并延长交圆F 2于点B ,连结BF 2交椭圆C于点E ,连结DF 1.已知DF 1= 5 2 .
(1)求椭圆 C的标准方程;
(2)求点 E的坐标.
在中,角所对的边分别为,已知, (Ⅰ)求的大小; (Ⅱ)若,求的取值范围.
设函数. (Ⅰ)解不等式; (Ⅱ)若函数的解集为,求实数的取值范围.
在极坐标系中,已知圆的圆心,半径. (Ⅰ)求圆的极坐标方程; (Ⅱ)若,直线的参数方程为(为参数),直线交圆于两点,求弦长的取值范围.
如图,是圆的直径,、在圆上,、的延长线交直线于点、,.求证: (Ⅰ)直线是圆的切线; (Ⅱ).
设函数(,为常数) (Ⅰ)讨论的单调性; (Ⅱ)若,证明:当时,.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号