游客
题文

如图,在 A B C D 中,点 E 和点 F 是对角线 B D 上的两点,且 B F D E

(1)求证: B E D F

(2)求证: A B E C D F

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

如图,在△ABC中,AB=ACADBC,垂足为DAEBC, DEAB.

证明:(1)AE=DC;(2)四边形ADCE为矩形.

先化简,再求值:,其中a=-2,b

如图,抛物线y=ax2+bx+c经过点A(0,4)、B(2,4),它的最高点纵坐标为,点P是第一象限抛物线上一点且PA=PO,过点P的直线分别交射线AB、x正半轴于C、D.设AC=m,OD=n.

(1)求此抛物线的解析式;
(2)求点P的坐标及n关于m的函数关系式;
(3)连结OC交AP于点E,如果以A、C、E为顶点的三角形与△ODP相似,求m的值.

如图1,△ABC的边BC在直线上,AC⊥BC,且AC=BC;△EFP的边FP也在直线上,边EF与边AC重合,且EF=FP.
(1)将△EFP沿直线向左平移到图2的位置时,EP交AC于点Q,连结AP,BQ.猜想并写出BQ与AP所满足的数量关系,请证明你的猜想;
(2)将△EFP沿直线向左平移到图3的位置时,EP的延长线交AC的延长线于点Q,连结AP,BQ.你认为(1)中所猜想的BQ与AP的数量关系还成立吗?若成立,给出证明;若不成立,请说明理由;
(3)若AC=BC=4,设△EFP平移的距离为x,当0≤x≤8时,△EFP与△ABC重叠部分的面积为S,请写出S与x之间的函数关系式,并求出最大值.

某厂工人小王某月工作的部分信息如下:
信息一:工作时间:每天上午8∶20~12∶00,下午14∶00~16∶00,每月25天;
信息二:生产甲、乙两种产品,并且按规定每月生产甲产品的件数不少于60件.
生产产品件数与所用时间之间的关系见下表:

生产甲产品件数(件)
生产乙产品件数(件)
所用总时间
10
10
350
30
20
850

信息三:按件计酬,每生产一件甲产品可得1.50元,每生产一件乙产品可得2.80元.
根据以上信息,回答下列问题:
(1)小王每生产一件甲种产品,每生产一件乙种产品分别需要多少分?
(2)小王该月最多能得多少元?此时生产甲、乙两种产品分别多少件?

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号