[选修4-4:坐标系与参数方程]
在直角坐标系 xOy 中,以坐标原点 O 为极点, x 轴正半轴为极轴建立极坐标系,曲线 C 1 的极坐标方程为 ρ=2sinθ π 4 ≤ θ ≤ π 2 ,曲线 C 2 : x = 2 cos α y = 2 sin α ( α 为参数, π 2 <α<π ).
(1)写出 C 1 的直角坐标方程;
(2)若直线 y=x+m 既与 C 1 没有公共点,也与 C 2 没有公共点、求 m 的取值范围.
在极坐标系中,已知圆ρ=2cos θ与直线3ρcos θ+4ρsin θ+a=0相切,求实数a的值.
在平面直角坐标系xOy中,求过椭圆(φ为参数)的右焦点,且与直线(t为参数)平行的直线的普通方程.
在极坐标系中,已知圆C的圆心坐标为C,半径R=,求圆C的极坐标方程.
已知关于x的不等式|ax-2|+|ax-a|≥2(a>0). (1)当a=1时,求此不等式的解集; (2)若此不等式的解集为R,求实数a的取值范围.
若对任意x>0,≤a恒成立,求a的取值范围.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号