游客
题文

[选修4-4:坐标系与参数方程]

在直角坐标系 xOy 中,以坐标原点 O 为极点, x 轴正半轴为极轴建立极坐标系,曲线 C 1 的极坐标方程为 ρ=2sinθ π 4 θ π 2 ,曲线 C 2 : x = 2 cos α y = 2 sin α α 为参数, π 2 <α<π ).

(1)写出 C 1 的直角坐标方程;

(2)若直线 y=x+m 既与 C 1 没有公共点,也与 C 2 没有公共点、求 m 的取值范围.

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

已知函数的最小正周期为
(I)求值及的单调递增区间;
(II)在△中,分别是三个内角所对边,若,求的大小.

已知函数
(1)求不等式的解集;
(2)若关于的不等式的解集非空,求实数的取值范围.

在直角坐标系中,以原点为极点,轴的正半轴为极轴建坐标系,已知曲线,已知过点的直线的参数方程为为参数),直线与曲线分别交于两点.
(Ⅰ)写出曲线和直线的普通方程;
(Ⅱ)若成等比数列,求的值.

如图所示,已知与⊙相切,为切点,为割线,弦相交于点,上一点,且.

(1)求证:
(2)求证:.

已知函数
(1)若且函数在区间上存在极值,求实数的取值范围;
(2)如果当时,不等式恒成立,求实数的取值范围.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号