游客
题文

已知,直线与函数的图象都相切于点。   
(1)求直线的方程及的解析式;
(2)若(其中的导函数),求函数的极大值.

科目 数学   题型 解答题   难度 容易
登录免费查看答案和解析
相关试题

在一次数学测验后,班级学委对选答题的选题情况进行了统计,如下表:


几何证明选讲
坐标系与
参数方程
不等式选讲
合计
男同学(人数)
12
4
6
22
女同学(人数)
0
8
12
20
合计
12
12
18
42

(1)在统计结果中,如果把几何证明选讲和坐标系与参数方程称为几何类,把不等式选讲称为代数类,我们可以得到如下2×2列联表:


几何类
代数类
总计
男同学(人数)
16
6
22
女同学(人数)
8
12
20
总计
24
18
42

据此统计你是否认为选做“几何类”或“代数类”与性别有关?若有关,你有多大的把握?
(2)在原统计结果中,如果不考虑性别因素,按分层抽样的方法从选做不同选做题的同学中随机选出7名同学进行座谈.已知这名班级学委和两名数学科代表都在选做“不等式选讲”的同学中.
①求在这名班级学委被选中的条件下,两名数学科代表也被选中的概率;
②记抽到数学科代表的人数为X,求X的分布列及数学期望E(X).
下面临界值表仅供参考:

P(K2k0)
0.15
0.10
0.05
0.025
0.010
0.005
0.001
k0
2.072
2.706
3.841
5.024
6.635
7.879
10.828

参考公式:K2

2012年3月2日,国家环保部发布了新修订的《环境空气质量标准》.其中规定:居民区中的PM2.5(PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称可入肺颗粒物)年平均浓度不得超过35微克/立方米,PM2.5的24小时平均浓度不得超过75微克/立方米.某城市环保部门随机抽取了一居民区去年40天的PM2.5的24小时平均浓度的监测数据,数据统计如下:

组别
PM2.5(微克/立方米)
频数(天)
频率
第一组
(0,15]
4
0.1
第二组
(15,30]
12
0.3
第三组
(30,45]
8
0.2
第四组
(45,60]
8
0.2
第五组
(60,75]
4
0.1
第六组
(75,90)
4
0.1

(1)写出该样本的众数和中位数(不必写出计算过程);
(2)求该样本的平均数,并根据样本估计总体的思想,从PM2.5的年平均浓度考虑,判断该居民区的环境是否需要改进?说明理由;
(3)将频率视为概率,对于去年的某2天,记这2天中该居民区PM2.5的24小时平均浓度符合环境空气质量标准的天数为X,求X的分布列及数学期望E(X).

某种报纸,进货商当天以每份1元从报社购进,以每份2元售出.若当天卖不完,剩余报纸报社以每份0.5元的价格回收.根据市场统计,得到这个季节的日销售量X(单位:份)的频率分布直方图(如图所示),将频率视为概率.

(1)求频率分布直方图中a的值;
(2)若进货量为n(单位:份),当nX时,求利润Y的表达式;
(3)若当天进货量n=400,求利润Y的分布列和数学期望E(Y)(统计方法中,同一组数据常用该组区间的中点值作为代表).

平面内动点P到点F(1,0)的距离等于它到直线x=-1的距离,记点P的轨迹为曲线Γ.
(1)求曲线Γ的方程;
(2)若点ABCΓ上的不同三点,且满足=0,证明:△ABC不可能为直角三角形.

已知圆C1x2y2-2y=0,圆C2x2+(y+1)2=4的圆心分别为C1C2P为一个动点,且直线PC1PC2的斜率之积为-.
(1)求动点P的轨迹M的方程;
(2)是否存在过点A(2,0)的直线l与轨迹M交于不同的两点CD,使得|C1C|=|C1D|?若存在,求直线l的方程;若不存在,请说明理由.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号