(本大题共14分)一袋中装有分别标记着1,2,3,4数字的4只小球,每次从袋中取出一只球,设每只小球被取到的可能性相同.(1)若每次取出的球不放回袋中,求恰好第三次取到标号为3的球的概率;(2)若每次取出的球放回袋中,然后再取出一只球,现连续取三次球,若三次取出的球中标号最大的数字为,求
的概率分布列与期望.
(本小题满分12分)已知椭圆上一点M的纵坐标为2.
(1)求M的横坐标;
(2)求过点M且与共焦点的椭圆方程。
(本小题满分12分)已知p:对任意的实数x都有ax2+ax+1>0成立;q:关于x的方程x2-x+a=0有实数根。如果“pq”为假命题,“p
q”为真命题,求实数a的取值范围。
(本小题满分10分) 是否存在实数p,使4x+p<0 是x2-x-2>0的充分条件?如果存在求出p取值范围;否则,说明理由。
已知
(1)求函数的定义域;
(2)判断函数的奇偶性,并加以说明;
(3)求的值.
已知函数f(x)=x+,x∈[1,3].
(1)判断f(x)在[1,2]和[2,3]上的单调性;
(2)根据f(x)的单调性写出f(x)的最值.