游客
题文

甲、乙等五名奥运志愿者被随机地分到 A , B , C , D 四个不同的岗位服务,每个岗位至少有一名志愿者.
(Ⅰ)求甲、乙两人同时参加 A 岗位服务的概率;
(Ⅱ)求甲、乙两人不在同一个岗位服务的概率;
(Ⅲ)设随机变量 ξ 为这五名志愿者中参加 A 岗位服务的人数,求 ξ 的分布列.

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

(本小题满分16分)已知为实数,函数,函数
(1)当时,令,求函数的极值;
(2)当时,令,是否存在实数,使得对于函数定义域中的任意实数,均存在实数,有成立,若存在,求出实数的取值集合;若不存在,请说明理由.

(本小题满分16分)已知数列)满足其中
(1)当时,求关于的表达式,并求的取值范围;
(2)设集合
①若,求证:
②是否存在实数,使都属于?若存在,请求出实数;若不存在,请说明理由.

(本小题满分16分)
在平面直角坐标系中,已知椭圆的离心率,直线过椭圆的右焦点,且交椭圆两点.
(1)求椭圆的标准方程;
(2)已知点,连结,过点作垂直于轴的直线,设直线与直线交于点,试探索当变化时,是否存在一条定直线,使得点恒在直线上?若存在,请求出直线的方程;若不存在,请说明理由.

(本小题满分14分)某学校为了支持生物课程基地研究植物生长,计划利用学校空地建造一间室内面积为900m2的矩形温室,在温室内划出三块全等的矩形区域,分别种植三种植物,相邻矩形区域之间间隔1m,三块矩形区域的前、后与内墙各保留 1m 宽的通道,左、右两块矩形区域分别与相邻的左右内墙保留 3m 宽的通道,如图.设矩形温室的室内长为(m),三块种植植物的矩形区域的总面积为(m2).

(1)求关于的函数关系式;
(2)求的最大值.

(本小题满分14分)如图,四棱锥的底面ABCD 是平行四边形,平面PBD⊥平面 ABCD, PB=PD,分别是的中点,连结.求证:

(1)∥平面
(2)⊥平面

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号