已知椭圆G的中心在坐标原点,长轴在x轴上,离心率为,两个焦点分别为
和
,椭圆G上一点到
和
的距离之和为12.
圆:
的圆心为点
.
(1)求椭圆G的方程;(2)求面积;(3)问是否存在圆
包围椭圆G?请说明理由.
.本题有(1)、(2)、(3)三个选答题,每题7分,请考生任选2题作答,满分14分.如果多做,则按所做的前两题记分.作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中.
(1)(选修4—2 矩阵与变换)(本小题满分7分)
已知矩阵,向量
.
(Ⅰ) 求矩阵的特征值
、
和特征向量
、
;
(Ⅱ)求的值.
(2)(选修4—4 参数方程与极坐标)(本小题满分7分)
在极坐标系中,过曲线外的一点
(其中
为锐角)作平行于
的直线
与曲线分别交于
.
(Ⅰ) 写出曲线和直线
的普通方程(以极点为原点,极轴为
轴的正半轴建系);
(Ⅱ)若成等比数列,求
的值.
(3)(选修4—5 不等式证明选讲)(本小题满分7分)
已知正实数、
、
满足条件
,
(Ⅰ) 求证:;
(Ⅱ)若,求
的最大值.
(本小题满分14分)
已知函数f(x)=m(x-1)2-2x+3+lnx(m≥1).
(Ⅰ)当时,求函数f(x)在区间[1,3]上的极小值;
(Ⅱ)求证:函数f(x)存在单调递减区间[a,b];
(Ⅲ)是否存在实数m,使曲线C:y=f(x)在点P(1,1)处的切线l与曲线C有且只有一个公共点?若存在,求出实数m的值,若不存在,请说明理由.
(本小题满分13分)
某公司有价值万元的一条流水线,要提高该流水线的生产能力,就要对其进行技术改造,从而提高产品附加值,改造需要投入,假设附加值
万元与技术改造投入
万元之间的关系满足:①
与
和
的乘积成正比;②
时,
;③
,其中
为常数,且
.
(Ⅰ)设,求
表达式,并求
的定义域;
(Ⅱ)求出附加值
的最大值,并求出此时的技术改造投入.
(本小题满分13分)
已知,在水平平面上有一长方体
绕
旋转
得到如图所示的几何体.
(Ⅰ)证明:平面平面
;
(Ⅱ)当时,直线
与平面
所成的角的正弦值为
,求
的长度;
(Ⅲ)在(Ⅱ)条件下,设旋转过程中,平面与平面
所成的角为
,
长方体
的最高点离平面
的距离为
,请直接写出
的一个表达式,并注明定义域.
(本小题满分13分)
椭圆:
与抛物线
:
的一个交点为M,抛物线
在点M处的切线过椭圆
的右焦点F.
(Ⅰ)若M,求
和
的标准方程;
(II)求椭圆离心率的取值范围.