已知二次函数f(x)=ax2+bx(a,b为常数,且a≠0)满足条件:f(x–1)=f(3–x)且方程f(x)=2x有等根.
(1)求f(x)的解析式;
(2)是否存在实数m,n(m<n=,使f(x)定义域和值域分别为[m,n]和[4m,4n],如果存在,求出m、n的值;如果不存在,说明理由.
在平面直角坐标系xOy中,已知曲线,将
上的所有点的横坐标、纵坐标分别伸长为原来的
、2倍后得到曲线
. 以平面直角坐标系xOy的原点O为极点,x轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线
.
(1)试写出直线的直角坐标方程和曲线
的参数方程;
(2)在曲线上求一点P,使点P到直线
的距离最大,并求出此最大值.
已知函数(
)
(1)若从集合
中任取一个元素,
从集合
中任取一个元素,求方程
恰有两个不相等实根的概率;
(2)若从区间
中任取一个数,
从区间
中任取一个数,求方程
没有实根的概率.
为了解目前老年人居家养老还是在敬老院养老的意向,共调查了50名老年人,其中男性明确表示去敬老院养老的有5人,女性明确表示居家养老的有10人,已知在全部50人中随机地抽取1人明确表示居家养老的概率为。
(1)请根据上述数据建立一个2×2列联表;(2)居家养老是否与性别有关?请说明理由。
参考数据:
![]() |
0.100 |
0.050 |
0.025 |
0.010 |
0.001 |
![]() |
2.706 |
3.841 |
5.024 |
6.635 |
10.828 |
已知函数
(1)求的单调区间;(2)求
上的最小值.
m取何值时,复数
(1)是实数;(2)是纯虚数.