已知椭圆的中心在原点
,焦点在
轴上,右准线的方程为
,倾斜角为
的直线
交椭圆
于
两点,且
的中点坐标为
,求椭圆
的方程;
((本小题满分14分)
设数列为等比数列,数列
满足
,
,已知
,
,其中
.
(Ⅰ)求数列的首项和公比;
(Ⅱ)当时,求
;
(Ⅲ)设为数列
的前
项和,若对于任意的正整数
,都有
,求实数
的取值范围.
((本小题满分14分)
给定椭圆:
,称圆心在坐标原点
,半径为
的圆是椭圆
的“伴随圆”. 已知椭圆
的两个焦点分别是
,椭圆
上一动点
满足
.
(Ⅰ)求椭圆及其“伴随圆”的方程
(Ⅱ)试探究y轴上是否存在点(0,
)
,使得过点
作直线
与椭圆
只有一个交点,且
截椭圆
的“伴随圆”所得的弦长为
.若存在,请求出
的值;若不存在,请说明理由。
(本小题满分12分)
日销售量 |
1 |
1.5 |
2 |
频数 |
10![]() |
25 |
15 |
频率 |
0.2 |
某批发市场对某种商品的日销售量(单位:吨)进行统计,最近50天的统计结果如下:
(Ⅰ)填充上表;
(Ⅱ)若以上表频率作为概率,且每天的销售量相互独立.
①5天中该种商品恰好有2天的销售量为1.5吨的概率;
②已知每吨该商品的销售利润为2千元,表示该种商品两天销售利润的和(单位:
千元),求的分布列.
(本小题满分l2分)
已知△ABC的三个内角A,B,C所对的边分别为且
(Ⅰ)求的大小;
(Ⅱ)若求
△ABC。
(本小题满分14分)
设数列为等比数列,数列
满足
,
,已知
,
,其中
.
(Ⅰ) 求数列的首项和公比;
(Ⅱ)当m=1时,求;
(Ⅲ)设为数列
的前
项和,若对于任意的正整数
,都有
,求实数
的取值范围.