(本上题满分12分)某高校为了参加“CBA杯”安徽省大学生篮球联赛暨第十届CU—BA安徽省选拔赛,需要在各班选拔预备队员,规定投篮成绩甲级的可作为入围选手,选拔过程中每人投篮5次,若投中3次则确定为乙级,若投中4次及以上则可确定为甲级,一旦投中4次,即终止投篮,已知某班同学小明每次投篮投中的概率是0.6。(I)求小明投篮4次才被确定为乙级的概率; (II)设小明投篮投中次数为X,求X的分布列及期望。
为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老人,结果如下:
(Ⅰ)估计该地区老年人中,需要志愿提供帮助的老年人的比例;
(Ⅱ)能否有99℅的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?
(Ⅲ)根据(Ⅱ)的结论,能否提出更好的调查办法来估计该地区的老年人中,需要志愿者提供帮助的老年人的比例?说明理由。
附:
如图,已知四棱锥
的底面为等腰梯形,
,
,垂足为
,
是四棱锥的高。
(Ⅰ)证明:平面
平面
;
(Ⅱ)若
,
60°,求四棱锥
的体积。
设等差数列
满足
,
。
(Ⅰ)求
的通项公式;
(Ⅱ)求
的前
项和
及使得
最大的序号
的值。
不等式选讲已知 均为正数,证明: ,并确定 为何值时,等号成立。
已知
为半圆
:
(
为参数,
)上的点,点
的坐标为(1,0),
为坐标原点,点
在射线
上,线段
与
的弧
的长度均为
。
(I)以
为极点,
轴的正半轴为极轴建立极坐标系,求点
的极坐标;
(II)求直线
的参数方程。