某人在一山坡P处观看对面山顶上的一座铁塔,如图所示,塔高BC=80(米),塔所在的山高OB=220(米),OA=200(米),图中所示的山坡可视为直线l,且点P在直线l上,l与水平地面的夹角为,tan
=
.试问,此人距水平地面多高时,观看塔的视角∠BPC最大(不计此人的身高)?
在△ABC中,角A,B,C的对边分别为a,b,c,且cos(A-B)cosB-sin(A-B)sin(A+C)
=-.
(1)求sinA的值;
(2)若a=4,b=5,求向量
在
方向上的投影.
设函数f(x)=-
sin2ωx-sinωxcosωx(ω>0),且y=f(x)图象的一个对称中心到最近的对称轴的距离为
.
(1)求ω的值;
(2)求f(x)在区间[π,]上的最大值和最小值.
已知函数f(x)=(2cos2x-1)sin2x+cos4x.
(1)求f(x)的最小正周期及最大值;
(2)若α∈(,π),且f(α)=
,求α的值.
设函数f(θ)=sinθ+cosθ,其中,角θ的顶点与坐标原点重合,始边与x轴非负半轴重合,终边经过点P(x,y),且0≤θ≤π.
(1)若点P的坐标为(,
),求f(θ)的值;
(2)若点P(x,y)为平面区域Ω:上的一个动点,试确定角θ的取值范围,并求函数f(θ)的最小值和最大值.
设函数f(x)=Asin(ωx+)(其中A>0,ω>0,-π<
≤π)在x=
处取得最大值2,其图象与x轴的相邻两个交点的距离为
.
(1)求f(x)的解析式;
(2)求函数g(x)=的值域.