如图所示,四棱锥P—ABCD的底面是矩形,PA⊥平面ABCD,E、F分别是AB、PD的中点,又二面角P—CD—B为45°.(1)求证:AF∥平面PEC;(2)求证:平面PEC⊥平面PCD;(3)设AD=2,CD=2,求点A到平面PEC的距离.
若直线l:与抛物线交于A、B两点,O点是坐标原点。 (1)当时,求证:OA⊥OB; (2)若OA⊥OB,求证:直线l恒过定点;并求出这个定点坐标。
椭圆经过点,对称轴为坐标轴,焦点在轴上,离心率, 求椭圆的方程。
点是曲线上任意一点,求点到直线的最小距离。
已知函数与的图像都过点,且在点处有公共切线,求、的表达式。
已知数列满足: (I)求的值; (Ⅱ)求证:数列是等比数列; (Ⅲ)令(),如果对任意,都有,求实数的取值范围.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号