指出下列命题的真假:
(1)命题“不等式(x+2)2≤0没有实数解”;
(2)命题“1是偶数或奇数”;
(3)命题“属于集合Q,也属于集合R”;
(4)命题“AA
B”.
已知点A(-1,0),B(1,-1)和抛物线.,O为坐标原点,过点A的动直线l交抛物线C于M、P,直线MB交抛物线C于另一点Q,如图.
(1)证明: 为定值;
(2)若△POM的面积为,求向量
与
的夹角;
(3)证明直线PQ恒过一个定点.
对于三次函数。
定义:(1)设是函数
的导数
的导数,若方程
有实数解
,则称点
为函数
的“拐点”;
定义:(2)设为常数,若定义在
上的函数
对于定义域内的一切实数
,都有
成立,则函数
的图象关于点
对称。
己知,请回答下列问题:
(1)求函数的“拐点”
的坐标
(2)检验函数的图象是否关于“拐点”
对称,对于任意的三次函数写出一个有关“拐点”的结论(不必证明)
(3)写出一个三次函数,使得它的“拐点”是
(不要过程)
已知等差数列的前n项和为
,公差
成等比数列
(1)求数列的通项公式;
(2)若从数列中依次取出第2项、第4项、第8项,
,按原来顺序组成一个新数列
,且这个数列的前
的表达式.
甲、乙两人玩一种游戏;在装有质地、大小完全相同,编号分别为1,2,3,4,5,6六个球的口袋中,甲先模出一个球,记下编号,放回后乙再模一个球,记下编号,如果两个编号的和为偶数算甲赢,否则算乙赢.
(1)求甲赢且编号和为8的事件发生的概率;
(2)这种游戏规则公平吗?试说明理由.
如图,已知一四棱锥P-ABCD的底面是边长为1的正方形,且侧棱PC⊥底面ABCD,且PC=2,E是侧棱PC上的动点
(1)求四棱锥P-ABCD的体积;
(2)证明:BD⊥AE。