设平面上向量,
,
与
不共线,
(Ⅰ)证明向量与
垂直;
(Ⅱ)若两个向量与
的模相等,试求角
.
已知双曲线=1(a>0,b>0)的两条渐近线方程为y=±
x,若顶点到渐近线的距离为1,求双曲线方程.
已知双曲线的离心率等于2,且经过点M(-2,3),求双曲线的标准方程.
如图,已知△OFQ的面积为S,且·
=1.设|
|=c(c≥2),S=
c.若以O为中心,F为一个焦点的椭圆经过点Q,当|
|取最小值时,求椭圆的方程.
已知椭圆=1(a>b>0)的离心率e=
,连结椭圆的四个顶点得到的菱形的面积为4.
(1)求椭圆的方程;
(2)设直线l与椭圆相交于不同的两点A,B.已知点A的坐标为(-a,0).若|AB|=,求直线l的倾斜角.
已知椭圆C:=1(a>b>0)经过点M(-2,-1),离心率为
.过点M作倾斜角互补的两条直线分别与椭圆C交于异于M的另外两点P、Q.
(1)求椭圆C的方程;
(2)试判断直线PQ的斜率是否为定值,证明你的结论.