已知双曲线G的中心在原点,它的渐近线与圆相切,过点P(-4,0)作斜率为
的直线l,使得l和G交于A、B两点,和y轴交于点C,并且点P在线段AB上,又满足
(1)求双曲线G的渐近线方程
(2)求双曲线G的方程
(3)椭圆S的中心在原点,它的短轴是G的实轴,如果S中垂直于l的平行弦的中点轨迹恰好是G的渐近线截在S内的部分,求椭圆S的方程。
(本小题满分14分)
设某旅游景点每天的固定成本为500元,门票每张为30元,变动成本与购票进入旅游景点的人数的算术平方根成正比。一天购票人数为25时,该旅游景点收支平衡;一天购票人数超过100时,该旅游景点须另交保险费200元。设每天的购票人数为,盈利额为
元。
(Ⅰ)求与
之间的函数关系;
(Ⅱ)该旅游景点希望在人数达到20人时即不出现亏损,若用提高门票价格的措施,则每张门票至少要多少元(取整数)?
(参考数据:.)
(本小题满分12分)
从1、2、3、4、5、8、9这7个数中任取三个数,共有35种不同的取法(两种取法不同,指的是一种取法中至少有一个数与另一种取法中的三个数都不相同)。
(Ⅰ)求取出的三个数能够组成等比数列的概率;
(Ⅱ)求取出的三个数的乘积能被2整除的概率。
(本小题满分12分)
已知向量且
。
(Ⅰ)求的值;
(Ⅱ)求函数的值域。
已知抛物线及点
,直线
斜率为
且不过点
,与抛物线交于点
、
两点.
(Ⅰ)求直线在
轴上截距的取值范围;
(Ⅱ)若、
分别与抛物线交于另一点
、
,证明:
、
交于定点.
(本小题满分14分)
设函数
(Ⅰ)研究函数的极值点;
(Ⅱ)当p>0时,若对任意的x>0,恒有,求p的取值范围;
(Ⅲ)证明: