已知以原点
为中心的椭圆的一条准线方程为
,离心率
,
是椭圆上的动点.
(Ⅰ)若
的坐标分别是
,求
的最大值;
(Ⅱ)如图,点
的坐标为
,
是圆
上的点,
是点
在
轴上的射影,点
满足条件:
,求线段
的中点
的轨迹方程.
在中,
分别是角A、B、C的对边,
,且
.
(1)求角A的大小;
(2)求的值域.
已知点A(-1,0),B(1,-1)和抛物线.,O为坐标原点,过点A的动直线l交抛物线C于M、P,直线MB交抛物线C于另一点Q,如图.
(1)证明: 为定值;
(2)若△POM的面积为,求向量
与
的夹角;
(3)证明直线PQ恒过一个定点.
对于三次函数。
定义:(1)设是函数
的导数
的导数,若方程
有实数解
,则称点
为函数
的“拐点”;
定义:(2)设为常数,若定义在
上的函数
对于定义域内的一切实数
,都有
成立,则函数
的图象关于点
对称。
己知,请回答下列问题:
(1)求函数的“拐点”
的坐标
(2)检验函数的图象是否关于“拐点”
对称,对于任意的三次函数写出一个有关“拐点”的结论(不必证明)
(3)写出一个三次函数,使得它的“拐点”是
(不要过程)
已知等差数列的前n项和为
,公差
成等比数列
(1)求数列的通项公式;
(2)若从数列中依次取出第2项、第4项、第8项,
,按原来顺序组成一个新数列
,且这个数列的前
的表达式.
甲、乙两人玩一种游戏;在装有质地、大小完全相同,编号分别为1,2,3,4,5,6六个球的口袋中,甲先模出一个球,记下编号,放回后乙再模一个球,记下编号,如果两个编号的和为偶数算甲赢,否则算乙赢.
(1)求甲赢且编号和为8的事件发生的概率;
(2)这种游戏规则公平吗?试说明理由.