已知函数,
、
是
图像上两点.
(1)若,求证:
为定值;
(2)设,其中
且
,求
关于
的解析式;
(3)对(2)中的,设数列
满足
,当
时,
,问是否存在角
,使不等式
…
对一切
都成立?若存在,求出角
的取值范围;若不存在,请说明理由.
19. (本小题满分12分)
如图,直四棱柱ABCD—A1B1C1D1的高为3,底面是边长为4且∠DAB = 60°的菱形,ACBD = O,A1C1
B1D1 = O1,E是O1A的中点.
(1)求二面角O1-BC-D的大小;
(2)求点E到平面O1BC的距离.
|
18. (本小题满分13分)
已知函数.
(1)若在x = 0处取得极值为 – 2,求a、b的值;
(2)若在
上是增函数,求实数a的取值范围.
17. (本小题满分13分)
某工厂在试验阶段大量生产一种零件.这种零件有、
两项技术指标需要检测,设各项技术指标达标与否互不影响.若有且仅有一项技术指标达标的概率为
,至少一项技术指标达标的概率为
.按质量检验规定:两项技术指标都达标的零件为合格品.
(1)求一个零件经过检测为合格品的概率是多少?
(2)任意依次抽出5个零件进行检测,求其中至多3个零件是合格品的概率是多少?
16. (本小题满分13分)
设集合,若
,求实数a的取值范围.
21.(本小题满分13分)
设是函数
的两个极值点,且
.
(1)求证:;
(2)求的取值范围;
(3)若函数,当
且
时,求证:
.