在平面直角坐标系中,为坐标原点,已知两点、,若动点满足且点的轨迹与抛物线交于、两点.(Ⅰ)求证:;(Ⅱ)在轴上是否存在一点,使得过点的直线交抛物线于于、两点,并以线段为直径的圆都过原点。若存在,请求出的值及圆心的轨迹方程;若不存在,请说明理由.
如图,是⊙的直径,垂直于⊙所在的平面,是圆周上不同于的一动点. (1)证明:面PAC面PBC; (2)若,则当直线与平面所成角正切值为时,求直线与平面所成角的正弦值.
已知:且, (1)求的取值范围; (2)求函数的最大值和最小值及对应的x值。
如图,在三棱柱中,平面, ,点是的中点. 求证:(1);(2)平面.
已知直线过点与圆相切, (1)求该圆的圆心坐标及半径长 (2)求直线的方程
(满分12分)已知函数.(Ⅰ) 求在上的最小值;(Ⅱ) 若存在(是常数,=2.71828)使不等式成立,求实数的取值范围; (Ⅲ) 证明对一切都有成立.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号