(本题满分18分;第(1)小题5分,第(2)小题5分,第(3)小题8分)
设数列是等差数列,且公差为
,若数列
中任意(不同)两项之和仍是该数列中的一项,则称该数列是“封闭数列”.
(1)若,求证:该数列是“封闭数列”;
(2)试判断数列是否是“封闭数列”,为什么?
(3)设是数列
的前
项和,若公差
,试问:是否存在这样的“封闭数列”,使
;若存在,求
的通项公式,若不存在,说明理由.
已知
(1)求的值;
(2)求角.
(本小题满分10分)选修4-5:不等式选讲
对于任意的实数和
,不等式
恒成立,记实数
的最大值是
.
(1)求的值;
(2)解不等式.
(本小题满分10分)【选修4—1:几何证明选讲】
在直角坐标系中,以原点为极点,轴的正半轴为极轴建坐标系,已知曲线
,已知过点
的直线
的参数方程为
(
为参数),直线
与曲线
分别交于
两点。
(1)写出曲线和直线
的普通方程;
(2)若成等比数列,求
的值.
(本小题满分10分)【选修4—1:几何证明选讲】
如图,在正中,点
分别在边
上,且
,
,
相交于点
(1)求证:四点共圆;
(2)若正的边长为2,求,
所在圆的半径.
(本小题满分12分)设函数,其中
为正实数.
(l)若是函数
的极值点,讨论函数
的单调性;
(2)若在
上无最小值,且
在
上是单调增函数,求
的取值范围;并由此判断曲线
与曲线
在
交点个数.