(本题满分18分;第(1)小题5分,第(2)小题5分,第(3)小题8分)
设数列是等差数列,且公差为
,若数列
中任意(不同)两项之和仍是该数列中的一项,则称该数列是“封闭数列”.
(1)若,求证:该数列是“封闭数列”;
(2)试判断数列是否是“封闭数列”,为什么?
(3)设是数列
的前
项和,若公差
,试问:是否存在这样的“封闭数列”,使
;若存在,求
的通项公式,若不存在,说明理由.
已知三角形的三个顶点坐标分别为:点A(0,1)、B(4,-1)、C(2,5)
(1)若经过点A的直线l与点B和点C的距离相等,求直线l的方程;
(2)若点是
外接圆上的动点,求
的取值范围.
中心在原点,焦点在坐标轴上的一个椭圆与一双曲线有共同的焦点F1,F2,且,椭圆的长半轴比双曲线的半实轴长
,离心率之比为2:3。求这两条曲线的方程。
已知中心在原点,焦点在轴的椭圆过点
,且焦距为2,过点
分别作斜率为
的椭圆的动弦
,设
分别为线段
的中点.
(1)求椭圆的标准方程;
(2)若,求证:直线
恒过定点,并求出定点坐标.
已知点直线
相交于点M,且
.
(1)求点的轨迹
的方程;
(2)过定点作直线
与曲线
交于
两点,
的面积是否存在最大值,若存在,求出
面积的最大值,若不存在,请说明理由.
已知函数,其中a∈R
(1)若函数在
单调递增,求实数
的取值范围
(2) 若曲线y=f(x)在点(1,f(1))处的切线垂直于y轴,求函数f(x)的单调区间与极值.