已知 ,
(Ⅰ)求
的值;
(Ⅱ)求
的值.
已知甲盒内有大小相同的1个红球和3个黑球, 乙盒内有大小相同的2个红球和4个黑球,现从甲、乙两个盒内各任取2个球.
(1)求取出的4个球均为黑球的概率;
(2)求取出的4个球中恰有1个红球的概率;
(3)设为取出的4个球中红球的个数,求
的分布列和数学期望
从名男生和
名女生中任选
人参加演讲比赛,
①求所选人都是男生的概率;
②求所选人恰有
名女生的概率;
③求所选人中至少有
名女生的概率.
(1)用反证法证明:在一个三角形中,至少有一个内角大于或等于;
(2)已知,试用分析法证明:
.
已知函数.
(1)当时,求
的值域;
(2)当,
时,函数
的图象关于
对称,求函数
的对称轴;
(3)若图象上有一个最低点
,如果图象上每点纵坐标不变,横坐标缩短到原来的
倍,然后向左平移1个单位可得
的图象,又知
的所有正根从小到大依次为
,
,…
,…且
,求
的解析式.
经英国相关机构判断,MH370在南印度洋海域消失.中国两舰艇随即在边长为100海里的某正方形ABCD(如图)海域内展开搜索.两艘搜救船在A处同时出发,沿直线AP、AQ向前联合搜索,且(其中点P、Q分别在边BC、CD上),搜索区域为平面四边形APCQ围成的海平面.设
,搜索区域的面积为
.
(1)试建立与
的关系式,并指出
的取值范围;
(2)求的最大值,并求此时
的值.