正定中学组织东西两校学生,利用周日时间去希望小学参加献爱
心活动,东西两校均至少有1名同学参加。已知东校区的每位同学往返车费是3元,
每人可为5名小学生服务;西校区的每位同学往返车费是5元,每人可为3位小学
生服务。如果要求西校区参加活动的同学比东校区的同学至少多1人,且两校区同
学去希望小学的往返总车费不超过37元。怎样安排东西两校参与活动同学的人数,
才能使受到服务的小学生最多?受到服务的小学生最多是多少?
两城相距
,在两地之间距
城
处
地建一核电站给
两城供电.为保证城市安全,核电站距城市距离不得少于
.已知供电费用(元)与供电距离(
)的平方和供电量(亿度)之积成正比,比例系数
,若
城供电量为
亿度/月,
城为
亿度/月.
(Ⅰ)把月供电总费用表示成
的函数,并求定义域;
(Ⅱ)核电站建在距城多远,才能使供电费用最小,最小费用是多少?
设定义域为的函数
(Ⅰ)在平面直角坐标系内作出函数的图象,并指出
的单调区间(不需证明);
(Ⅱ)若方程有两个解,求出
的取值范围(只需简单说明,不需严格证明).
(Ⅲ)设定义为的函数
为奇函数,且当
时,
求
的解析式.
定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和两平面的交线平行.
请对上面定理加以证明,并说出定理的名称及作用.
(1)计算.
(2)若,求
的值.
已知,
(1)若,且
∥(
),求x的值;
(2)若,求实数
的取值范围.