游客
题文

某港口 O 要将一件重要物品用小艇送到一艘正在航行的轮船上,在小艇出发时,轮船位于港口的 O 北偏西30°且与该港口相距20海里的 A 处,并正以30海里/小时的航行速度沿正东方向匀速行驶。假设该小艇沿直线方向以 v 海里/小时的航行速度匀速行驶,经过 t 小时与轮船相遇.
(I)若希望相遇时小艇的航行距离最小,则小艇航行速度的大小应为多少?
(II)为保证小艇在30分钟内(含30分钟)能与轮船相遇,试确定小艇航行速度的最小值;
(III)是否存在 v ,使得小艇以v海里/小时的航行速度行驶,总能有两种不同的航行方向与轮船相遇?若存在,试确定v的取值范围;若不存在,请说明理由.

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

在平面内,如果用一条直线去截正方形的一个角,那么截下的一个直角三角形按图所标边长,由勾股定理有。设想正方形换成正方体,把截线换成如图所示的截面,这时从正方体上截下三条侧棱两两垂直的三棱锥,如果用表示三个侧面面积,表示截面面积,那么你类比得到的结论是

在数列中,对于任意,等式成立,其中常数.
(Ⅰ)求的值;
(Ⅱ)求证:数列为等比数列;
(Ⅲ)如果关于n的不等式的解集为,求b和c的取值范围.

设函数,其中.
(Ⅰ)若函数的图象在点处的切线与直线平行,求实数的值;
(Ⅱ)求函数的极值.

如图,要建一间体积为,墙高为的长方体形的简易仓库. 已知仓库屋顶每平方米的造价为500元,墙壁每平方米的造价为400元,地面造价忽略不计. 问怎样设计仓库地面的长与宽,能使总造价最低?最低造价是多少?

已知函数,其中.
(Ⅰ)若函数为奇函数,求实数的值;
(Ⅱ)若函数在区间上单调递增,求实数的取值范围.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号