如图所示,在长方体 中, , ,M是棱 的中点.
(Ⅰ)求异面直线 和 所成的角的正切值;
(Ⅱ)证明:平面 平面
(本小题满分14分)如图,、
为椭圆
的左、右焦点,
、
是椭圆的两个顶点,椭圆的离心率
,
.若
在椭圆
上,则点
称为点
的一个“椭点”.直线
与椭圆交于
、
两点,
、
两点的“椭点”分别为
、
,已知以
为直径的圆经过坐标原点.
(1)求椭圆的标准方程;
(2)的面积是否为定值?若为定值,试求出该定值;若不为定值,请说明理由.
(本小题满分13分)设函数
(1)若函数在定义域上为增函数,求实数
的取值范围;
(2)当时,设函数
,若
使得
成立,求实数
的取值范围.
(本小题满分12分)已知等差数列的公差大于0,且
是方程
的两根,数列
的前
项的和为
,且
.
(1)求数列,
的通项公式;
(2)若,设数列
的前
项和
,证明:
.
(本小题满分12分)如图1所示的梯形中,
,
,且
,如图2,沿
将四边形
折起,使得面
与面
垂直,
为
的中点.
(1)求证:;
(2)求二面角的余弦值.
(本小题满分12分)第53届世乒赛将于2015年4月26日至5月3日在中国苏州举办,中国女子乒乓球队队员经过顽强的拼搏冲入女子团体项目的决赛,已知团体赛采用“五局三胜”制,一、二、四、五场为单打,第三场为双打;一个队由三名运动员组成,每名运动员出场2次.根据历次大型比赛的统计,中国女队单打获胜的概率为,双打获胜的概率为
.假如在决赛中的第一局,由于单打1号选手准备不够充分,中国女乒先输了第一场,在这个条件下.
(1)求中国女乒夺得团体冠军的概率;
(2)设决赛中比赛总的局数为,求
的分布列及
.(两问均用分数作答)